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ADVANCED RESEARCH PROJECTS AGENCY
SEMIANNUAL TECHNICAL REPOPT

June 30, 1971

1. INTRODUCTION

The goal of this project is to provide an enviromment for high quality
research activities in infarmation processing. One major area of research
is mathematical modeling and analysis of camputer systems. Another principle
area of research, which is closely coupled with the first, is measurement
of conputer systems. We have been particularly active in the analysis and
measurement of time-shared systems and the ARPA camputer cammunication net-
work. Our third major area of responsibility has been in the specification
of software protocol for use in the network.

This report details our progress fram the time of ow. last Semiannual
Technical Report of August 15, 1970, through June 30, 1971.* References (1]
to [15] include work accarplished prior to the current reporting period.

In Section 2 of this report, we survey our progress in the modeling
and analysis of camputer systems. In Section 2.1 we discuss the wark on
time-shared systems, and in Section 2.2 the work on camputer-cammnication
networks. A major effort has been our work on network measurement, and
this is discussed in Section 3. Progress in the development of our time-
sharing system and the network software develomgment : 5 described in Section
4. Section 5 concludes with same general cammen’s about our progress.

*The length of this reparting period is due to an adjustment made to bring
the Semiannual Technical Reparts and Quarterly Management Reports irto
synchronization.



2. ANALYTIC MODELING AND MFASUREMENT OF COMPUTER SYSTEMS

Our research in camputer systems modeling and measurement has been
mainly in the areas of time-shared scheduling algorithms and camputer-

communication networks.

2.1. Time-Shared Systams Analysis

During this perind we have made considerable progress in our resea.ch
in the amalysis of time-shared systems. In the previous Semianmual Techni-
cal Report we reported on efforts by Kleinrock and Mintz to analyze a very
geieral class of scheduling algorithms. This class of scheduling algorithms
includes as special cases most of the algaritims previously studied in the
literature and also many additional algoritlms. For example, it includes
the case of a miltilevel queueing system in which round-robin is used at
sane intermediate level queve (our SEX time-sharing system has such a schedu-
ling algaritim). The method of solution required analyzing the round-
robin system with bulk arrivals, and this was accanmplished by Kleinrock,

Muntz and Rodemich (Ref. [16]). This paper forms Appendix A of this report.
The application of these results to miltilevel queueing systems is detailed
in Ref. [17], which is included as Appendix B.

During this past year, we have also made progress in the area of bounds
and approximations in the analysis of queuing systems. Recently, Kleinrock,
Muntz and Hsu have succeeded in finding tight upper and lower bounds on the
mean response time for a given amount of service time required in an M/G/1
queueing system with an arbitrary scheduling algoritim which does not make
use of a priori knowledge of a custamer's service time requirement. Given
the arrival rate of customers and the service time distribution, bounds are

determined such that the response function far any scheduling algorithm




mst at all points lie between the u per and lower bounds. This is an
important result since it places non-trivial limits on what can be accomp-
lished by varying the scheduling algoritim for a system. Also in this work,
several recessary conditions were found for feasible response curves in
addition to the upver and loser bounds. The results of this work are to be
reported at the 1971 IFIPS Congress, Ljubljana, Yugoslavia, August 1971 (Ref.
(18)). This paper is included as Appendix C. We are continuing our efforts
in this area with the aim of further characterizing feasible response functions.

In the last Semiannual Technical Report it was mentioned that a major
unsolved problem in computer systems analysis is the consideration of multiole
resources. Fouad Tobagi, a graduate student, is working in this area under
the direction of Kleinrcck. He is investigating the application of same
recent results from the literature on approximation techniques to the problem
of analyzing networks of queuss. The results to date appear promising in
providing a computationally efficient mesans of analyzing queueing networks
in vhich there is a limiting resocurce or bottleneck.

During this reporting period, we have begun an effort in the area of
msasurement of time-shared camputer systams. Johnny Wong, a graduate student
working with Mntz, has begun a msasuremsnt project on the SEX time-sharing
systax. Based on mesasuremsnts of process execution tims requivewents, swep-
ping time and page requiremnts, a new scheduling algoritim was dasigred '
is currently being inylemented. Msasuremant of the paging behavior of pro-
cesses has strongly suggested the possibility of incressing sysvem efficiency
by allowing processes to coomnicats page requiremesnts to the operating system
through systsm calls. A preliminary set of systam calls has been implementsd
and is currently being evaluated. This sppesars tL be virginal area for study.



2.2. Computer-Commmication Nets
We have continued a strong effort in the area of computer-commmnications

networks analysis and optimzation. In particular, major areas of research
are: routing, nodal blocking behavior in nstworks, and optimal assigment
of channel capacity.

Gary Pultz, a graduate student working with Kleinrock, has used mathe-
matical snalysis and simulation to study adsptive routing techniques in
store-and-forwvard computer networks. Using averc» message delay as a mea-
sure of network performance, a number of routing algorithes have been evalu-
ated. The asbility of the algorithms *o adspt to commmication line failures
has been determined by simulation. A jortion of this effort is dsscribed in

Ref. (19] (Appendix D). Ref. (20} is nearly completed and will in addition
report on analysis of the effects of multipacket messages and nodal storage
requirerants.

An izportant and difficult problem in store-and-forward networks is
that of nodal blocking. When a node's buffer storage is filled, it becomas
blccked and cannot receive new messages. This puts an increased load on this
noda's neighbors in the network and thus, nodal blocking is a transient ef-
fect vhich can propagate in time and space. Kleinrock and graduats studant
Jack Zeigler have studied this problem and their results are reportsd in
Ref. (21] and Ref. (22]. Ref (21] is included as Appendix E.

Graduate students Mario Osrla and Luigi Pratta have worked with Klein-
rock on caputatiorally efficient techniques for determining the optimal
assignmer.t of shannel cepacity in a computer-commmnication netwurk. The
abjective is either to minimise delay with the total cost held fi>ed or to

minimize total cost with the delar held fixed. Under the conditions of

I




negligible nodal blocking and fixed network topolngy and routing, an optimi-
zation algorithm has been devised which is significantly more efficient than
anventional techniques for constrained optimization probiems. A report of

this work is now in preparation (Ref. {<3]). Further work in this area will
include the network topology and routing as variables in the cptimization.

At the IFIP Congress 71, Professor Wesley Chu will present a paper
dsaling with the selection of an optimal message block size for camputer
caomnications (Ref. [24], Appandix F). In this research he analyzes the
relationships among acknowledgment time, chunnel transmission rate, channel
error characteristics, average message length and optimal block size. Currently,
Qw is completing a study of demultiplexing buffer requirements using a simu-
lation model (Ref. [25]).

Professor Cantor has investigated the design of non-blocking switching
networks with a miniumum nutber of switches. The results of this study are
included as Appendix G (Ref. [26]).

A paper surveying various aspects of the optimization of computer—commu-
nication networks was presentsd by Kleinrock at the 1971 IEFE National Conven-
tion (Iaf. [27]), Appendix H).

3. NETWORK MEASUREMENTS

The network measurement activity has involved a variety of tasks, includ-
ing the further development of the measurement tools, "shakedown” tests on the
network performance, measurement of actual user traffic, and the use of mea-
surements to improve analytic models of the network behavior (Ref. [28]).
Each of these aress is discussed in some detail in the following paragraphs.
Garald Cole has been the principal participant in this efiort.

sll



3.1. Extensions to the Measurement Capabilities

The control of network experiments and the oollection of measurement
data were originally developed to operate in a stand-alone (batch operating
system) environment, but have been mified to alsc function uncer the SEX
time-sharing system. This change allows ane to conduct data gathering experi-
ments alang with the reqular interactive usage of the system, and it provides
the basis for further an-line data gathering and reduction usage. However,
most of the experiments run Awing the reporting period utilized the earlier
system due to the large computation overhead of the artificial traffic genera-
tor. This overhead is particularly large since the generator was modified to
produce pseudo-random message lengths and interarrival times in addition to
the earlier fiyed parameter capabilities, but the random generation capabili-
ties proved to be essential for many of the experiments which were conducted.

3.2. Analytical Efforts Related to Msasurements

Some of the more significant results of the measurement efforts to date
have involved the creation or improvement of analytic models of the network
behavior based on insights gained from experimental measurement data. The
modeling and measurement efforts were found to be quite complementary and
resulted in an iterative procedure of model building and evaluation, with
feedback fram each test resulting in a more acceptable model. Models were
developed in this manner relating to priority handling of messages, optimal
packet sizes, and the separation of packet: due to interference traffic.
Several significant improvements were made in the models based on abserved
discrepancies between the dbserved and originally predicted behavior and
resulted in good agreement for the refined models.




3.3. Network Experiments
In addition to the measurements related to analytic models as der.cribed

above, several experiments were run to measure network usage and to attempt
to predict the network performance. The first of these tests involved the
measurement of the traffic between SRI and the University of Utah in December
of 1970. Data wera taken during several hours of the SRI usage of the PDP-10
at Utah, and these data were correlated with the known formats and activities
involved in the transactions. In this manner, we were able to gain informa-
tion on the user behavior, and at the same time, verify the operation and
utility of the measurement routines.

One of the primary concemns in the analysis of the SRI-Utah traffic
measurement was the matter of how many such users the network could simulta-
necusly support. A rather crude estimate was made based on Scherr's* model
of user think time and "processing” need=, and resulted in a range of 50 to
170 users depending on the file transmission requirements of each user. These
interference tests were extended by use of artificial traffic and produced
saturation levels which were oonsistent with the values as predicted by
Kleinrock's results,** and led to further investigations of cyclic queueing
phencmena associated with RFNM driven traffic on a given set of links. The
through-put for such a condition was also investigated as a function of the
nmber of links. This latter test resulted in an interesting demonstration
of several of the measurement techniques in resolving a discrepancy between
the expected and measured saturation through-put.

;g;!nrr, A.L., "An Analysis of Time-Shared Camputer Systems,” The MIT Press,
** Kleinrock, L., "Certain Analytic Results for Time-Shared Processors,”
Proc. IFIP Qongress 1968, Edinburg, Scotland, pp. D119-D125, August 5-10, 1968.




3.4. Oooxrdination with BEN

Several peculiar effects were encountered during the network experiments
which were eventually found to be "bugs® in the network itself. Several of
these effects were resolved in the IMP system that was released in mid-Novem-
ber, 1970, but others were subsequently encountered, particularly in regard
to the handling and measurement of moderately high traffic loads. This lat-
ter problem became more visible after we requeszed that BEN change the round-
trip delay recording resolution from 0.1 to 0.8 msec. to awoid a register
overflow problem. Subsequent tests showed that the IMP would "crash" at
certain traffic levels, and BEN was then able to isolate and eliminate the
problem. The network control center persannel were quite helpful in these
efforts and also cooperated in the execution of same of the subsequent tests,
e.g., by changing selected IMP parameter values during a test.

3.5. Measurement Plans

Measurement plans for the near future include the monitoring of network
usage as the new prctoool b comes operational and conducting a set of "before
and after” tests to determine the effect of the BEN changes in the flow con-
trol and routing algorithms which will soan be implemented. Other experiments
will aiso be run to further evaluate and improve same of the analytic models,
and to check out new data reduction programs as they become available.

4. NETWORK AND SYSTEMS SOFTWARE

This section covers work done by the SPAIE Growp which has been under
the leadership of Steve Crocker and Jon Postel. The effort has been divided
equally between maintaining and extending the SEX time-sharing system and
development of network software.




4.1. Network Progress

Three major meetings of the network Working Group (NWG) were held.
Steve Crocker of UCIA was Chairman and major orgarizer of these meetings.
In conjunction with the Fall Joint Computer Oonference, the NWG met in
Houston in November. Discussion there centered on the problems of cansole
interaction between systems, particularly the incanpatibility of line-
oriented local echo devices with character-ariented remote echo systems.
It was agreed that this incampatibility would prevent some users with line-
oriented consoles fram using some character-oriented systems, but this could
be tolerated. The NWG held a February meeting at the University of Illinois.
Network protocols were the topic of discussion. The primviy concern was
over same needed refinements to the HOST-HOST or le\ .! 2 protocol. A special
camittee chaired by Steve Crocker was set up to resolve these issues ard its
report (NWG/RFC #107) is ar official modification to the protocol. This
repart calls for new coomand formats, new coomands (Reset, Reset reply),
replacement of marking with a fixed size header, and the introduction of byte
sizes. Also discussed at the Illinois meeting were the use of sockets and
the initial connection protocol. A third MWG meeting was held at Atlantic
City in conjunction with the Spring Joint Camputer Conference in May. Prime
topics of discussion at this meeting were several 3rd level protocols, e.q.,
Telnet-Logger, File Transfer, and initial connection procedures. Oammittees
were established to deal with each of these topics. The Telnet-lLogger issues
were resolved at the May meeting and initial connection protocol was estab-
lished in early June.

Implementation of a Netwark Control Program (NCP) and Telnet and Logger

programs which follow the official specifications are now campleted and oper-



ational on our time-sharing system.

The SPADE Grovp has provided support for the measurement experiments
conducted by Gerald Cole. The measurement programs can now be run uncer
the SEX system in parallel with other network and local use of the system.

4.2. System Development
The GEX time-sharing system has grown to support more of the users

of the Sigma-7. \‘ie have acquired to IMIAC PDS-1 display terminals and four
model 33 teletypes. The operating system has been changed in several ways.
Same of the changes are carrections to defects in the system as aoquired
from LRL. The file system and resident operating system were made more
independent so that a system crash no longer causes the file system to be
destroyed. A garbage collection process now reclaims lost file space and
farces file system consistency. An interprocess cammunication facility
called ivents was added. A batch processing facility has beer implemented
to provide service for non-interactive users and a tape input-output super-
visor has been implementxd. An operator's control program has been imple-
mented which allows the selective starting and stopping of system level
programs, e.g., NCP, printer process. The system is currently scheduled for
standard user service 20 hours per week. Reliability has been improved to

the point that system crashes now occur on the average of once per week.

S. CONCLUSIONS AND SELF-EVALUATION

Oour efforts in the mthematical modeling and measurement of camputer
systems has been very profitable during this period. In the computer net-
works area particularly, our two-pronged attack with analysis and measurement

10




has yielded significant resultcs. We have bequn a measurement effort in
connection with time-shared systems and plan to accelerate this effort in
cooperation with our analytic work in this area. Progress on the development
of network protocol has been substantial. Developmental work on the SEX
time-sharing system has not diminished as much as had been expected, but 1t
has been a necessary and wortlwhile investment. We plan to continue shift-
ing more of our efforts toward the modeling and measurement areas.

Our efforts have established UCLA as a leader in the field of modeling
and analysis of camputer systems and an impartant member of the ARPA Network
cammmnity.

11
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THE PROCESSOR-SHARING QUEUEING MOCEL FOR TIM'-SHARED SYSTEMS
WITH BULK ARRIVALS*

by L. Kleinrock, R. R. Mntz
Computer Science Department
University of Califormia, los Angeles, California
and
E. Fodemich

Jet Propulsion Laboratory
Pasadena, California

We consider a model which is applicable to time-multiplexed systems,
such as multiplexsd commnication channels and time-shared camputing
facilities. In this (processor-sharing) queueing model, all jobs currently
in the systam share equally the processing capability of the server. In
this peper, v investigats the processor-sharing model for the case of bulk
arrivals. The mean response tims of the system as a function of required
service time is derived. An exmple is given to show the effect of bulk
arrivals versus single arrivals for a constant utilization.

* This work was supported by the Advanced Research Projects Agency of
the Dspartmant of Defenwe (DNIC-15-69-C-0285). This paper also presents
the results of one phase of ressarch carried out at the Jet Propulsion
Laboratory, California Institute of Technology, under Contract No. NAS 7-100,
spansored by the National Aeronautics and Space Administratian.
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T™HE PROCESSOR-SHARING QUEUEING MOUEL FOR TIME-SHARED SYSTEMS
WITH BULK ARRIVALS*

by L. Kleinrock, R. R. Mntz
Computer Science Department
University of California, Los Angeles, Califormia
and

ot B.mlfl;ontmy

Pasadena, California
I. INTRODUCTION

In a time-sharing system, the computing facilities are time-multiplexed

aong the currently active jobs according to some scheduling discipline. A
major goal of the scheduling discipline is to provide short response times to
small requests for service. This creates an effective enviroment for inter-
action between a user at a console and the coputing facility since most

interactive requests are for relatively small amownts of service. The user
should expect longer delays if his request is for a significant amount of
service. Analytic studies of these systams are aimed at determining the effect

of various scheduling disciplines on response time.

In camputer networks, we are often faced with a configuration in which
many time-shared computer systams are intercomnectsd over a conmmication net-
work. It is important to understand the bshavior of these time-shared nodes
s0 that one can evaluate the performance of these networks.

The application of queusing models to time-shared camputer systems
has been an active area of research since 1964 [1). A survey of this area

* This work was supported by the Advanced Research Projects Agency of
the Departmant of Dafense (DAHC-15-69-C-0285). This paper also presents the
results of ane phase of research carried out at the Jet Propulsion Laboratory,
Galifornia Institute of Technology, under Contract No. NAS 7-100, sponsored




is available in reference (2). In this paper, we generalize same previous
models by permitting bulk arrivals to the system.

In the usual round-robin scheduling discipline, a newly arriving
job must join the end of a queue for the server. When it reaches the front
of the queue, it is allocated a quantum of time on the server. If the job
ocarpletes before the quantum expires, it leaves the system. Otherwise, it
must rejoin the end of the queue to wait for its next quantum. In this
paper, the quantum size is allowed to shrink to zero so that we have the
mprocessor-sharing” discipline. In effect, each job receives 1/n™ of
the processing capability of the processor when there are n jobs demanding
service. The model is illustrated in Fig. 1. This processor-sharing dis-
cipline war first introduced in 1967 (3] and analyzed for the case of
single Poisson arrivals. In this paper, we consider the bulk arrival
case where customers may arrive in groups. The arrival instants are,
as usual, assumed to be Poisson.
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Figure 1. The processor-sharing model

Aside from the case where bulk arrivals may be the actual arrival
mechanism for the systam, the bulk arrival case vresented here arises
naturally in solving more general models, Oonsider the case where the
server becames unavailable for periods of time with distribution F(d) and
mean d. Uhen the server once again becames available, he finds that a
number of new custamers have joined the system and so it appears to him that
a bulk arrival has taken place., Assure also that the interval between the
end of one of these "down” times and the start of the next is exponentially
distributed with mean .

The queueing time for the job can be thought of as the sum of two in-
tervals: the time between the arrival instant and the first time the server
becomes available, and from this time until the job leaves the system, The
neanlmqthofthefirstimliseuuycalmhtedmbe-;r—-_—-
mfi:ﬂﬁ»mlaaﬁ:atﬂaaaaﬂhmlwemmtoligh:gulmmd\.
We telescope the time axis to reduce all of the server "down" intervals to
zero length but keep the number of arrivals the same in each interval, On
the new time axis, the set of arrivals leaving a down time amnears as a bulk
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arrival, The generating function for the bulk size is easily calculable,
Now solve for the mean waitina time, ¥, for a job in this "virtual” time
frame, The virtual waiting time and the actual waiting tm,ﬁ;, Are related
byﬁh-i-ijyg. The mean queueing time for a job is just the sum of the
means of the two intervals described,

Other situations in which servicing of a class nf jobs is interrupted
can be apnroached in this manner., For example, nriority queueing models
with arbitrary service disciplines. The anproach has already been applied

to the analysis of feedback queueing models for timn-shared systems (4],

2. MOOEL
Formally, the parameters of the mndel are:
1) the interarrival times are exponentially distributed with the mean
interarrival time A, i.e.,
P(interarrival tire < t] = 1 - &t t>o

2) the distrihution of required service time in the CMtJ, B(t)

1 - a(t)e'et octet,
is assumed to be of the form B(t) =

0 t2t

vwhere q(t) is a polynomial in t of degree n. This of course, in-
cludes the exponential service time distribution when q(t) = 1,

3) ﬂ\edhtrﬂntimofa,theb\nksizeisarbimxywithmn;.

The generating function of a is G(z) = Z ziPla" il.
i=o

4) the queueing discipline is processor-sharing, i.e., the limit of
the round-robin discipline as the quantum size aprroaches zero.
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We want to solve for the mean queueing time to service a job requiring
T seconds of service. This is denoted by T(1).

3. AN INTEGRAL BQUATION DESCRIBING AVERAGE RESPONSE TIME

We approach this problem by first considering a discrete time system
with quantum size q > 0. We assums that arrivals and departures take place
anly at times that are integral multiples of q. For smll q any continuous
distribution can be approximated. By letting q approach 0 equations for
continuous time systems can e found.

Let n(iq) = the mean mmber of jobs in the systam with ig seconds of
attained service when a tagged job arrives.

oinﬂnmntythnajobmd\humimmm
of service will require more than (i + 1)q seconds of
sexvice.

a = the mean bulk size of arrivals.

b = the msan mmber of arrivals with a tagged job.

Since we intend to let q approach 0, the position of the tagged job
with respect to the jobs that arrive in the same group is not important. We
will assume for convenience that the tagged job is the last job in the group.

The mean time until the tagged job has received its first quancum of
sexvice is given by

TI-Zn(jq)q+bq+q
J=0
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N Inml.tho-muxmm(i-l)“mdimq\nntmofsexvice
to the tagged job is given by

T, = (n(99)0,0, .4 cec 0, . Q)
i jz-o 5 9+l J+i-2

+ Z; (xa'l‘j 0g0q oo °1-j-2q’
+4q+ b[c:ocs1 oo °1-llq (1)

The first teou represents the time required by those jobs which were
initially in the system and will still be there after the tagged job has
received i - 1 quanta of servics. The second term is the contribution due
to jobs that have arrived since the tagged job entsred the system. The
third term is dus to the tagged job itself. The last term results from
those jobs which arrived with the tagged job and require more than i - 1
quanta of service.

Dividing both sides of Bj. (1) by g we get

T [ _J

i
L — % ] ( ) oo e

q jz:n n(3Q)004) oo 99442

i-1
+ ;; Aa'rjoool oes °1-j-2

+14Dboyo; «e0 04, (2)
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let ig= 1t and jg=x. Then as q + 03

T
i, - aT(71)
R

9.6 . o l1=B(x+1)
3 I+l °°° Tiei-2 I - Blx)

n(jq) + n(x)
Og0y *o* O4_g-2 * 1 - B(r = x)
0g0y +++ 43 * 1 = B(1)
Therefcre as q + 0 Bq. (2) becomes

T (x) = f n(x) l—i%(g-é}ldx
0

Y
+ Aaf T (x) (1 - B(t - x) Jdx
0

+ 1 +Db[l -B(7)]
Fram Kleinrock and Coffman (6] we also have that
n(x) = Aa[l - B(x)]T* (x)

Substituting for n(x) we have

T (1) = xif T (x) (1 = B(x + 7))ax
0

T
+ ﬂf T (x) [1 - B(r - x)lax
0

+ 1+ Dbl - B(r)] (3)
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In terms of the generating function G(z) for a, we haw that a = 5'(1),
The value of b can also be expressed in terms of G(z). Oonsider that the
tagged job is selected at randam fram the arrivals to the qurueine svstem.
Then the probability that the job is selected fram a bulk size of n <sahs 1is

given by fa =n) (5
a

Therefore b + 1 = ; - nPla_' nl _ ~E(321 LG +6' (1) Gl

¢ - F PEa

It remains only to solve the inteqral equation, By. (3).

4. SOLUTION OF THE INTEGRAL POUATION
In this section we solve the integral equation (3) for the average
response time T(t). Recall that we have restricted the service time dis-

tribution B(t) such that

e“etq(t) o<t <t
With 1 - B(t) =
o t>t

vwhere q(t) is a polynamdal of degree n.
Then Bg. (3) becames

t,-t
T (1) = xi/ 1 (x)g(x + 1)e W O g
o

T

+ 2 j; ™ ()t - x)e ™ (TX¥) gy

+ bg(t)e™ +1 (4)
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After multiplying Eo. (4) by €*T, it mav be rewritten as

tl-‘l’
T (1) = 22 f e'"xq(r + X)T* (x)dx
(o]

T
+ )a /(; e a(r - x)T* (x)dx

+ bg(r) + P )

Let D denc*e the differential operator d/dr. Differentiating Iz. (5)
n + 1 times, we get

o0™l(!Tr (1)) = 22 f a™ (0" ¥ (e" 1 (1)
k=0

-ut
- )a £ e 3% (!:I)D""k(e‘"‘l"(t1 - 1)+ ™M
k=0

x)

where q is the km derivative of a. Now, multiplying by e"", the result

can be put in the form

1

. PR
0,DIT' (r) + 0, (DIT* (&) = 1) = u (6)

where OO(D) and 01 (D) are linear differential operators with constant co-
efficients, given bv the following formulas:

=

0 = (€ +w™ 23 T g™ (@ + 0™*
k=0

_a v .
0 ) =23 3 e 1,00 (€)) (€ + W)™
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molacimtbytl-tinm. (6), we get
0y (-DIT (1) +0_(-DOIT* (&) - 1) = ™!

Aopay -01(0) to this eguation, Oo(-D) to (2), and adl. Then we have

0,(D)T* (1) = (g (0) - 0, (1™ )

0,(6) = OO(C)OO(-C) = 0, (£)0, (=€)
Since Q, (£) is unchanged when £ is reolaced by -f, its roote occur in
pairs (am. -am),m-l. eeeo N+ 1, and

1™ o
€ = D)™ 0 (€ -a)
Q; i Oy

For general g(t), these roots are distinct and non-zero. Then the general
solution cf Bq. (7) in

T' (1) ~ o +Z (l\“ce-%‘t B‘%) (8)

where the constant a, is given by

n+l
ao - IOO(O) - 01(0)lu /02(0)

vhich can be reduced to

where t is the mean of B(t).

A formula ftx"l"(!:l - 1) follows from Bq. (8) by replacina t bytl -
Using these espressions in En. (6), and equatina the coefficient of each
exponential to aero, we get the conditions
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Oo(%) . rhe-%tlol(na) =0, m=1, ..., n¢+1
which we can satisfv by nutting
An = Cno %!

t

nn--cme-%‘ e, m-1, c.one+l

-a (tl-w)

T'(T) = — (9)

'
(0, (a,)e -0 fla)e
l-nt zc' % 1%
This expression for T'(t) must be put in the original intearal BEq. (4)
to determine the coefficients Cl. cees cml' Oollectina the coefficients
of the various epaonentiais which arise, we get the followinag system of

equations:

\a ﬁ G [0, () + o 1 ()] l — q.,i - *1%’7

b, =1
- ; (10)

0, 4=2, ..., n+1

In eressing the solution of this systam by determinants, only the
determinant of the coefficients, and the cofactors of the coefficients with
j = 1 are needed. These can he aiven mxnlicitly:




1 1
(v - %)1 u+ %)j ] m,§=1,...,n+l

A-cht[

1 1
7{n+2) (n+1) (n+l) (n+1)
2 (-1)%\ apeera j[’l( o - o)

ﬂl(u 2 Ml

and a typical cofactor is

1‘
- det
"1 [u-u)j (u*om)j]

2.}0»2) (nel) (_n;\wn%m%ﬂ}\wn jﬂ:z -
) , “J—i o? - ady™
We have
AaC, [0, (a)) + c-altlol (@)} = ba,y/8
n b? - ui)'"1
20, 1, 2 - o
= 07 - ™1/ 03 a))

and the other coefficients have similar formilas. Using these in Bg. (9),



2.n4l a1 -om(tl-t)
_ b qn) ) Qo(qn)e - 01(%)e

= - = ; t
1 -)at la 05 (a) o (o) + e-ﬁ“ 1Q1 (a,)

2
b (L -

T 1) = (11)

This last equation is the solution to Egq. (3) which we are seeking. It
is interesting to cbserve that for the non-bulk arrival case (i.e.,
Pla= 1] = 1), Eq. (11) reduces to

T'(t) = lf_o'

0 = \aju

This is the well-known result for single Poisson arrival to a round robin
processor sharing system with arbitrary service time distribution (7).

S. AN EXAMPLE

Ietq(t)-laxﬂtl--sotmtﬂ\eservicetinesametpamthuy
distributed. Then

Q(E) =E+u-)a
Q) = o
0,(6) = 1 = 2 + %2 - ¢2

The roots of 0,(£) are t (u- Aa) = ¢ a,



Therefore

2 2 -7
(" - ay) (a, + u - Aa)e
T e—L b i L ]

1-2aA la . =20, o1+u-x5

-, T
T b (uz-ai)(u1+u-xa)[e 1 -1]

T » ——0—— - — p-
l-2apn Ja (-Zul) (-ol) (°1 +u - )a)
or
x b | w?- u-amda - e W2l
T(T) & ———+ — =
l-2a/km )l 2(u - Aa)

Figure 2 shows this average response function for the case A = 0,75,

u= 1.0, a = 0,385, b = 0.746. The parameters inthis example were chosen
to correspond with an example from Reference (4). Also shown is the
solution for the non-bulk arrival case with the same service time distribu-
tion and the same mean arrival rate.
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AVERAGE RESPONSE TIME, T(t)

=3
p

RR WITH SINGLE ARRIVALS

A comparison of Average Respense Times for the Bulk Arrivel and Single
Asrivel Coees with Exponentiel Serviee Times;

Single Arviweix A= 0.208, s~ 10, p = 0208
Sulk Aviweie A=078, x°=18, p=0I08, §=0.308, b*=.74

32




6. OONCLUSION

The processor-sharing queueing model with bulk arrivals has been
studied. An integral equation, Eq. (3), describing the mean queueing time
for a job requiring t seconds of service was developed which is valid for
arbitrary service time distributions. This inteqral equation was solved in
Section 4 far a class of service time distributions which includes the

expenential distribution. The application of the bulk arrival model to
queueing systems with periods of server unavailability were indicated in
Section 1.
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PROCESSOR-SHARING QUEUEING MOLELS OF MIXED SCHEDULING DISCIPLINES
FOR TIME-SHARED SYSTEMS*

by L. Kleinrock and R. R. Muntz

Camputer Science Department
University of California, Los Angeles, California

ABSTRACT

Scheduling algorithms for time-shared camputing facilities are
cansidered in temms of a queueing theory model. The extremely useful limit
of "processor-sharing” is adopted, wherein the quantum of service shrinks to
zero; this approach greatly simplifies the prablem. A class of algorithms
is studied for which the scheduling discipline may change for a given job as
a function of the amount of service received by that job. These multilevel
disciplines form a natural extension to many of the disciplines previously
considered.

The average response time for jabs conditianed on their service require-
ment is solved for in this paper. Explicit solutions are given for the
system M/G/1 in which levels may be first-come-first-served (FCFS), feedback
(FB) or round-robin (RR) in any order. The service time distribution is
restricted to be a polynomial tines an exponential for the case of RR.

Exanples are described for which the average response time is plotted.
These exanmples display the great versatility of the results and demonstrate
the flexibility available for the intelligent design of discriminatory treat-
ment among Jabs (in favor of short jobs and against long jobs) in time-shared

camputer systems.

*This work was supported by the Advanced Research Projects Agency of
the Department of Defense (DAHC-15-69-C-0285).
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PROCESSOR-SHARING (QUELEING MODELS OF MIXED SCHEDULING DISCIPLINES
FOR TIME-SHARED SYSTEMS*

by L. Kleinrock and R. R. Mmtz

Computer Science Department
University of California, Los Angeles, California

1. INTRODUCTION

Queuveing models have been used successrully in the analysie of time-
shared computer systeme since the appearance of the first applied paper in
this field in 1964 [1]). A recent survey of this work is given by MKinney [2].
One of the first papers to omnsider the effect of feedback in queueing systems
was due to Takacs (3].

One of the goals in a time-shared camputer system is to provide rapid
response to those tasks which are inter-active and which place frequent,
but small,demands on the system. As a result, the system scheduling algo-
rithm must identify those demands which are small, and provide them with
preferential treatment over larger demands. Since we assume that the
scheduler has no explicit knowledge of job processing times, this identifi-
cation is accamplished implicitly by "testing” jobs. That is, jobs are
rapidly provided small amounts of processing and, if they are short, they
will depart rather quickly; otherwise, they will linger while other, newer
jobe are provided this rapid service, etc., thus providing good response to
small demands.

Generally, an arrival enters the time-sharad system and campetes for
the attention of a single processing unit. This arrival is forced to wait

*This work was supported by the Advanced Research Projects Agency of
the Department of Defense (DAHC-15-69-C-0285).
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in a system of queues until he is permitted a quantum of service time; when
this quantum epires, he is then required to join the systesm of queues to
await his second quantum, etc. The precise model for the system is developed
in Section 2. In 1967 the rnotion of allowing the quantum to shrink to zero
was studied [4) and was referred to as "prrcessor-sharing®, in 1966 Schrage
{18) also studied the zero-quantum limit. As the name implies, this zero-
quantum Limit provides a share or portion of the processing unit to many
customers simultanecusly; in the case of round-rabin (RR) scheduling (4],
all custamers in the system simultanecusly share (equally or on a priority
basis) the processor, whereas in the feedback (FB) scheduling (5] only that
set of custamers with the smallest attained service share the processor. We
use the term processor-sharing here since it is the processing unit itself
(the central processing unit of the camputer) which is being shared among
the set of the custamers; the phrase "time-sharing” will be reserved to imply
that custamers are waiting sequentizlly for their turn to use the entire
processor far a finite quantum. iIn stidying the literature one finds that
the aobtained results appear in a rather complex form and this camplexity
arises fram the fact that the quantum is typically assmmed to be finite as
opposed to infinitesimai. When one allows the quantum to shrink to zero,
giving rise to a processor-sharing system, then the difficulty in analysis
as well as in the form of results disappears in large part; one is thus
encouraged to consider the processor-sharing case. Clearly, this limit of
infinitesimal quantum® is an ideal and can seldam be reached in practice
due to overhead considerations; nevertheless, its extreme simplicity in
analysis and results brings us to the studies reported in this paper.

The two processor-sharing systens studied in the past are the RR and

*This limiting case is not unlike the diffusion approximation for
queues (see, for example, Gaver (15]).
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the FB [4,5). Typically, the quantity solved for is T(t), the expected
response time conditioned on the custamer's service time t; response time
is the elapsed time fram when a customer enters the system until he leaves
campletely serviced. This measure is especially important since it exposes
the preferential treatment given to shoxrt jobo at the expense Sf the long
jobs. Clearly, this discrimination is purposeful since, as s“ated above,
it is the desire in time-shared systems that smel) requests should be
allowed to pass through the systam quickly. In 1969 the distribution for
the response time in the RR system was fouwd (6]. In this paper we conside.
the case of mixed scheduling algoritime whereby custamers are treated
accarding to the RR algoritims, the FB algoritim, or first come first sexved
(FCFS) algarithm, depending upon how much total service time they have al-
ready received. Thus, as a custame. proceeds through the system cbtaining
service at varicus rates he is treated according to different disciplines;
the palicy which is appliod anong custamers in different levels is that of
the FB system as explained further in Section 2. Thus, natural generaliza-
tion of the previously studied processor-sharing systems allows one to
create a large mmber of new and interesting disciplines whose sjlutions
we present.

A more restricted study of this sort was reported by the zuchors in
(16]). Here we make use Of the additional results fram (11] to generalize
our analysis.

2. THE MODEL
The model we choose to use in representing the scheduling algoritims

is drawn fram queueing theory. This corresponds to the many previous models
studied (1,2,4,5,6,7,8,18], all of which may be thought of in terms of the
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stru.ture shown in Pig. 2.1. In this figure we indicate that new requests
enter the system in queues ypon arrival. Whenever the computer's central
processing unit (CPU) becomes free, some cus’~mer is allowed into the service
facility for an amount of time referred to as a quantum. If, during this
quartum, the total accumilated service for a customer equals his required
service time, then he departs the system; if not, at the end of quan tum,
mqmmwmmmotm—mmumwmu' ) for
additional service. The system of queues may order the cus
to a variety of differ=it criteria in order to select the next to
receive a quantunm, lnmhm.w”mtﬁnauywmdm
evaluating this criterion is the amount of attained service (total service
so far received).

In order to specify the scheduling algoirthm in terms of this model, it
is required that we identify the following:

a. The customer interarrival time distribution. We assume this to be
exponential, i.e.,

Plinterarrival time < t} =1 - o't t>0 (2.1)

where )\ is the average arrival rate of custamers.
b. The distribution of required service tire in the CPU. This we

assume to be arbitrary (but independent of the interarrival times). We thus

assume
P(service time < x]) = B(x) (2.2)

Also assum 1/u = average service time.

c. The quantum size. Here we assume a processor-shared model in which
customers receive an equal but vanishingly small amount of service each time
they are allowed into service. For more discussion of such systems, see

4,6,7,18).
40




d. The system of queues. We consider here a generalization and con-

solidation of many systems studied in the past. In particular, we define a
set of attained service times hi} such that

o-.°<a1<a2<...<au<am1-w (2.3)

The discipline followed for a job when it has attained service, 1, in the
interval

ai-l S 1T < .i i - 1.2....'“ + 1 (2.‘)

_ denoted as Di.ihmider Dy for any given level i to be
dﬂ:rz FIRST COME FIRST SERVED (FCFS); PROCESSOR SHARED-FB_ (FB): or
ROUND-ROBIN PROCESSOR SHARED (RR). The PCFS system nesds no explanation,
the FB system gives service next to that customer who so far has least
attained service; if there is a tie (among K customers, say) for this
position, then all K menbers in the tie get served simultancously (each
attaining useful service at a rate of 1/K sec/sec), this being the nature
of processor sharing systame. The RR processor sharing system shares the
service facility among ali customers present (say J custamers) giving
attained service to each at a rate of 1/J sec/sec. Mreover, between
intervals, the jcbs are treated as a set of FB disciplines (i.e., service
proceeds in the i level only if all levels j < i are empty). See
Pig. 2.2. For example, for N = 0, we have the usual single-level case
of either FCFS, RR, or FB. for N = 1, we could have any of nine disci-
plines (FCFS followed by FCFS, ..., RR followed by RR); note that FB followed
by FB is just a single FB system (due to overall FB policy between levels).
As an illustrative example, consider the N = 2 case shown in Pig. 2.3.
Ay new arrivals begin to share the processor in a RR fashion with all
other customers who 80 far have less than 2 secands of attained service.
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Custamers in the range of 2 < 1 < 6 may get served only if no customers
present have had less than 2 seconds of service; in such a case, that cus-
tamer (or custamers) with the least attained service will proceed to occupy
the sorvice in an FB fashion until they either leave, or reach 1= 6, or
some new customer arrives (in which case the overall FB rule provides that
the RR policy at level ] preempts). If all custarers have 1 > 6, then
the "oldest” customer will be served to campletion unless interrupted by a
new arrival. The history of some custamers in this example system is shown
in Fig. 2.4. We denote customer n by Cn. Note that the slope of attained
service varies as the nunber of customers simultaneously being serviced
changes. We see that c requires 5 seconds of service and spends 14 seconds
in system (i.e., response time of 14 seconds).

So muxch for the system specification. We may summarize by saying that
we have an M/G/1 queueing system*® model with processor sharing and with a I
generalized multilevel scheduling structure. ' 1

|

The quantity we wish to solve for is

T(t) = E{response time for a custamer requiring a
total of t secands of attained service) (2.5)

We further make the following definitions:

T,(t) = E{tim: spent in interval { (a,_,,a()

for wstomers requiring a total of ¢t
seconds of attained service) (2.6)

W1 denotes the single-server queueing system with Poisson arrivals
and arbitrary service time distribution; similarly M/W/1 denotes the more
special cese of exponential service time distribution. One might also think

of our processar-sharinc system as an infinite server sodel with constant
overall service rate.
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We note that

'ri(t) = T, (t') for t,t' > a, 2.7

Furthermore, we have, for a, _, < t < a, that

X
T(t) = 121 T, (t) (2.8)

Also we find it convenient to define the following quantities with respect

to B(t):
x -
cg.j B(t) + x _/' aB(t) (2.9)
(- x
X 2
2./ can+2f an 2.10
o x
Oex ™ a‘c'q (2.11)

l:! (2.12)
S e :

Note that "x represents the expected work found by a new arrival in the
systam M/G/1 where the service times are truncated at x.
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3. RESULTS FOR MILTILEVEL QUELEING SYSTEMS
We wish to find an expression for T(t), the mean system time (i.e.,
average response time) for jobs with service time t such that

a,) <t<a, i.e., jobs which reasch the i level queue and there leave
the system. To acomplish this it is convenient to isolate the i level
to same extent. We make use of the following two facts.
1. By the assumption of preemptive priority of lower level queues (i.e.,
FB discipline between levels) it is clear that jabs in lewvels higher
than the i level can be ignored. This follows since these jobs

cannot interfere with the servicing of the lower lewvels.

- level queue and

2. We are interested in jobs that will reach the i
then depart from the system before passing to the (i + 1)°% level. e
system time of such a jab can be thought of as occurring in two parts.
The first portion is the time from the job's arrival to the queueing
system until e group at the i level is serviced for the first time
after this job has reached the i level. The secand portion starts
with the end of the first portion and ends when the job leaves the
systamn. It is easy to see that both the first and second portions of
the job's systen time are unaffectad by the service disciplines used
in levels 1 through { - 1. Therefore, we can assure any convenient
disciplines. In fact, all these levels can be lumped into one equiva-
lent level which services jobs with attained service between 0 and

a ., seconds using any service discipline.

From (1) and (2) above it follows that we can solve for T(t) for jobs
that leave the system fram the im level by considering a two-level system.
The lower level services jobs with attained service between 0 and a2

whereas the second level services jobs with attained service between a, ,
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andai. Jobs that would have passed to the i+15t level after receiving

a, seconds of service in the original system are now assumed to leave the
system at that point. In other words the service times are truncated at a;.
3.1 1% Level Discipline is F®
onsider the two-level system with the secand level corresponding to

the 1t‘h level of the original systan. Since we are free to choose the

discipline used in the lower level, we can assume that the FB discipline is
used in this level as well. Clearly the two-level system behaves like a
single lewl FB gystem with service times truncated at a,. The solution
for such a system is known (5,9):

t <t
() = + (3.1)
T=%¢ * 20-07

3.2_i" Level Discipline is FOFS

Consider again the two-level system with breakpoints at a, , and a,.
Regardless of the discipline in the lower level, a tagged job entering the
system will be delayed by the sum of a) the work currently in both lewels
(-wai)plm.b)mynuurivnhtnﬂnlomlmlmduringﬂwmm

(average T(t) ) this job is in the system. These new arrivals form a Poisson

process with parameter ) and their contribution to the delay is a random
varisble whose first and second moments are t,  and 2‘ respectively.
i-1 i-1

Tus we have

T(t) =W+ At T(t) + ¢
&y 841
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T(t) = y=— (3.2)
where Wa, is given by Eq. (2.12). It is also possible to use these
methods for solving last-come~first-served and random order of service at
any level.

3.3 i Level Discipline is RR

In this case, our results are limited in the im interval to service
time distributions in which

~fix
B(x) = 1 - p(x)e a ) Sx<a (3.3)
p(x) = Po + PyX+ ... ¢ pnx" (3.4)

The service time distribution F(x), for this ith interval is then

B(a 4+ x) - B(a, ,)
i-1 I U -8x )
1 -Bla_)) LS SIS OsXx<ay -8
A (3.3a)
1 x> a‘ - 11_1
vhere
-fa
-1
x) = : Pl P axe... s » (3.4a)
q 1-Ba,_) Qo * QX + ... + q; .

Thus we permit in this interval, service time distributions of the form:

1 minus a polynomial of degree n times an exponential. The analysis of
this system appears in (l1); we make use of these results below. Neverthe-
less, we develop our analysis as far as possible for the case of general

B(x) before specializing to the class given by Egs. (3.3) (3.4).
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Wz start by considering the two-level system with breakpoints at ai-l
and a,. Consider the busy periods of the lower lewvel. During each such
busy period there may be a number of jobs that pass to the hignher level.
We choose to consider these arrivals to the higher level as ooccwrring at
the end of the lower level bisy period so that there is a bulk arrival to
the higher level at this time. We also choose to temporarily delete these
lower level busy periods from the tine axis. In effect we create a virtual
time axis telescoped to delete the lower level busy periods. Since the time
from the end of ane lower level busy per.od to the start of the next is
exponentially distributed (Poisson arrivalsl!), the arrivals to the higher
level appear in virtual time to be bulk arrivals at instants generated from
a Poisson process with parameter ).

Oonsider a tagged job that required t=a, +7 secords of servioce
(0<tca; -a; ;). Let a be the mean real time the job spends in the
system until its arrival (at the end of the lower level busy period) at the
higher level queue. Let oz('r) be the mean virtual time the job spends in
the higher level queue.

o can be calculated as follows. The initial d:lay is equal to the
mean work the job finds in the lower lewvel on arrival plus the a;_, scconds
of work that it contributed to the lower level. Therefore

a =W + 1t +a
1 A, a1_1°1 i-1

- 1 fw | (3.5)
3 IT%:' a .1-1’
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If a,{1) is the mean virtual time the job spends in the higher level,
we can easily convert this to the mean real time spent in this level. 1In
the virtual time interval oz(r) there are an average of Aoz(r) lower
level busy periods that hawe been ignored. Each of these has a mean length

E“‘i—l
ofIT-. Therefore, the mean real time the job spends in the higher

i-1
level is given by
t“i-l a (1)

o (1) + Aay(1) p=—s - =3 (3.6)
A1 Qa1

Conbining these results we see that a job requiring t=a , +1
seconds of service has mean system time given by

]

T(a; , + 1) = m:— wai-l ta, t ol (3.7)
i-1

The only unknown quantity in this equation is 02(1). To solwe for
a(1) we must, in general, consider an W/G/1 system with bulk arrival and
RR processor sharing. The only exception is the case of RR at the first
level which has only single arrivals. Since the higher level queues can be
ignored, the solution in this exceptional case is the same as for a round-
robin single level systam with service times truncated at a. Therefore,
from (8] we have for the first level

Y = oo 0Oct<a (3.8)
Ql

Let s now consider the bulk arrival RR system in isolation in order

to solve for the virtual time spent in the higher level queue, 02(1). The
service time distribution for this bulk arrival system is
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8(.1.1 + x) - B(.i-l)
T-8la )

0<x<a -a_,

F(x) =
1 xgai-ai_l

Note that the utilization factor for this bulk system is

is the mean of

where a is the mean mmber of arrivals in a bulk and %

the distribution F(x). Let us begin by solving for a. 1'miswd>ﬁor
the general case a,_), a,. a is just the mean nunber of jobs that arrive
during a low level busy period and require more than a seconds of
service. Therefore a must satisfy the equation

a=)t, a+[l-Ba)]l (3.10)

i-1

In this equation At is the mean nutber of jobs that arrive during the
i-1

service time of the first job in the busy period. Since each of these jabs

in effect generates a busy period, there are an average of AEQ a
i-1

arrivals to the upper level queue due to these jobs. The second term is
just the average number of times that the first job in the busy period will
require more than a, , seconds of service.

Clearly then
- 1 - B(ai-l)
as IT (3.11)
i-1

In {11), an integral equation is derived which defines a)(t) for the
RR bulk arrival system; we repeat that equation below

’
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aj(t) = \a (x)(1 = P(x + 1))

°i
j cz(x)ll = F(t = x))dx
o

+1 +Db[]l - p(t)) (3.12)

where a, (1) = da, (r)/dr, and b = mean rumber of arrivals with the tagged
job, The solution to this intsgral equation for the restrictad service

time distributions as given in Bgs. (13a) and (34a) is also given in [(11],
and for our problem takes the form

] °‘2‘Yn’
-, Y,.Y
, Qi 11 = &™) - 0y (xle e - 1 (3.13)
w [ ]
Q,(v,) ¢ e ’hol(vnnv,.
vhere
X °8 = 8a (3.14)
n Ay
Q) = (x+ 8™ - d é 7" o) (x + 9™ (3.15)
n
Qi) =23 ) o1, K) c,) (x + Y R (3.16)
k=0
N, (x) = Q_(X)Q (-x) = O (X)Gy (=) (3.17)
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and where Bg. (3.17) has roots (ococuwrring in pairs) X® Yo Y, for
m=1,2 ...,n+1 and the notation £X)(y) denotes the k' deriva-
tive of f with respect to its argument ewaluated at a value vy.

In the solution for 02(1) given in Bg. (3.13), we are required to
compute b(= mean mmber of arrivals with a tagged job). This we do by
first deriving an eqpression for

Glz) £ ¥ Plbulk sise = k;zX (3.18)
k=0

vhich is the probabilit’ generating function (z-transfoem) for the bulk
size. Either by direct arqumsnts based upon busy periods or by use of the
method of collective marks (12), we readily arrive at

* a3 -2
Glz) = (1 - a(ai_l)lzjg _iFL° =116(2))3

-1 3
; a)d e 09 dance
+ (.1-1)[-{,. ;2 %TL e (3(z)) “.:)IT ] (3.19)

In By, (3.19) the first term is conditioned on the assmuption that the
mwwmmmuwimm@'mn
the sacond term assumes that he doss not reach lavel i, Py, (3.19) reduces
to

G(z) = (1 - Bla;_,)])2e +

841 =2t(1=G(2))
f ¢ M) (1.20)
0o

Por arbitrary B(x), we cannot reduce this last exwession any further,
Nevertheless, we can cbtain momants fram it. In particular, from the
dafinition of a, we obtain

S1

A i T G i




- 1 - B(a;_,)
a-(‘,'(z)l I‘——il—-

z=] 1 =)t
3.1
which is exactly as obtained by more direct arquments in B, (3.11).
However, we are seeking b, For this we must calculate

2.2

2)\a . (1 =-p ) + 2%t ] (3.21)
[ i=1 <a;) @)

Now since the mean group size (1 + b) of a tagged custamer's group is
related to the bulk size distribution as the mean spread is related to the
inter-event distribution (namely the mean sprezd equals the second mament
of the inter-event interval divided by the first mmunt) [13], we have

l+b_secmdmmtofb\11ksize

maoment of b size 3.22)
aor
G"(z)
b= |

2) ml (3.23)

From Bg. (3.20) we get
bey—a—{[20a,_ -0, )+ 222 ] (3.24)

P, | 31 31

Having solved for a,(t) we may now substitute back into Fq. (3.7)

which solves the case when the ith

level discipline is RR and service
time is of the form given in Bqgs. (3.3a) and (3.4a). (Note that for i =1,

the solution given in Eq. (3.8) is good for any B(x).)
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It is instructive to display the solution for T(t) explicitly in a
special case for our ith level RR discipline. We choose the multilevel
system with M/W/1 and solve for T(ai_l + 1) after substituting 02('[)
into Eq. (3.7). Note for M/W1 that q(t) = 9, = 1. Also, fram Egs.
(3.14 - 3.17), and choosing B8 = |,

Q (%) = x +u = ra (3.25)
Q, (x) = \ae ! (3.26)
2 o= =2 =2ux 2
Qz(x) = u°=2uda + M) (1l ~e ) = x (3.27)
thus the roots of Qz(x) are
- - =ZUx
£y =t /uz -2na+ (@21 -e I (3.28)
and
1 *» 1 -
Fi u(l e ) (3.29)

thus from these and BEq. (3.13), we get

T

a,(t) =

2 ] - aak
L1

- - T o =y )x, vt
b(uz-yli)_[(yl-'-u-)\a)(l-e 1y e 1 lEel -1)] 30
LN 3.

2)\3712[71 +p=-2a -e

+
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Also from Eys. (2.9) ard (2,10) we obtain

= 1 =Hx

B = {1 = ™) (3.31)

:.7« « 201 - &™) (3.32)
u

We may substitute these last two equations into Egs. (3.11) and (3.24) te
obtain a and h explicitly., Also, we note from Eqs. (2,12) and (3.32) that

-ua,_ -va, _
A\l - e il'“‘i—l‘ i-1,
W, = (3.33)

a -pa,_
1 n-la-e i-1y,

Finally, we may substitute this expression for Wai X and By. (3.30) which
gives a, (1) into By. (3.7) vhich gives us the explicit form for T(1).

4. EXAMPLES

In this section we demnstrate through examples the nature of the
results/we have cbtained. Recall that we have given explicit solutions for
our general model in the case M/G/1 with processar sharing where the alloved
scheduling disciplines within a given level may be FCFS or FB; if the dis-
ciplineisRﬁ, it may be at level 1 and if it occurs at level i > 1, must
be of the form given in Egs. (3.3a) and (3.4a).

We begin with four examples from the system M/M/1. As mentioned in
Sectimz,weha\_;eninedisciplinesforthecase N = 1. This cames about
since we allow any one of three disciplines at level 1 and any one of three '
disciplines at level 2. As we have shown, the behavior of the average
conditional respense time in any particular level is independent of the
discipline in all other levels; th;s we have nine disciplines. In Fig. 4.1
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we show the behavior of each of the nine disciplines for the systam N = 1.
In this case we have assumed u =1, A = 0.75, and a = 2. From BEg. (3.1)
we see that the response time for the FB system is completely independent
of the values a, and therefore the curve shown in Fig. 4.1 for this re-
sponse time is applicable to all of our M/M/1 cases. Note the inflection
pointinthiscurveandthattheresponsetinegrowslinearly'as t » o
(a phenomenon not abservable from previously published figures but easily
seen from Eq. (3.1)). As can be seen fram its defining equation, the re-
sponse time far FCFS is linear regardless of the level; the RR system at
level 1 is also linear, but as we see fram this figqure and from Eq. (3.13)
the RR at levels i > 1 is nonlinear. Thus one can determine the behavior
of any of nine possible disciplines from Fig. 4.1. Adiri and Avi-Itzhak con-
sidered the case (FB, RR) [14].

Continuing with the case M/M/1, we show in Fig. 4.2 the case for N = 3
where D, = RR, D

1 2

chosen ai=i and p=1, A= 0.75. We also show in this figure the case

= FB, D3=FCFS,andD4=RR. In this case we hawve

FB over the entire range as a reference curve for camparison with this dis-
cipline. Note (in general for M/M/1) that the response time for any disci-
pline in an given level must either coincide with FB curve or lie above it
in the early part of the interval and below it in the latter part of the
interval; this is true due to the conservation law (1s].

The third example for W/M/1 is for the iterated structure Di = FCFS.

Once again we have chosen u =1, A = 0.75, andai i. Also shown in this
figure is a dashed line corresvonding to the FB system over the entire range.
Clearly, one may select any sequence of FB and FCFS with duplicates in
adjacent intervals and the behavior for such systems can be found from

Fig. 4.3. It is interesting to note in the general M/G/1 case with Di = FCFS
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that we have a solution for the FB system with finite quantum q; =a; =a
where preemption within a quantum is permitted! .
Our fourth example is for an M/M/1 system with Di = RR and is shown
in Fig. 4.4. Here we use the explicit form for T(1) derived from Egs.
(3.7), (2.30), and (3.33). We maintain the same value p =1, A = 0.75,
= 2, a, = 5. T(t) for this sytem is shown in Fig. 4.4.
We leave M/M/1 now axd give two exanples for M/G/1. For the first

3
acanplewedioosethesystenmz/lwiﬁ} N=1. In this system we have

% = (211)2:«3'2ux x>0 : (4.1)

Wenoteﬂutﬂmenaanserviceuneherelsagamglvmbyl/u.thesecond
moment of this distribution is 3/2u . We calculate -

- 1 =212, . 2 4.2
t“"il-i- e 1+ uai+2(ual)] : (4.2)

=l

We choose the system N =1 with D1=RRandD2=l~‘CI-'S.§Ebrthecasa
al=l/2u, /v, 2/u, 4/y, and « with u=1 and A=0.’é5 we show in
Fig. 4.5 the behavior of this systcom, :

The last exanple we use is for the following se.rvicetinedistribution:

1
bl(x) S = L ' (4.3)
e 3 <X
as shown in Fiy. 4.6. In this case, E1=%' i?l=l, t':=%, t?=-§
<i <5 6
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We choose the system D = FCFS, D, = RR, and D, = FCFS with a, =3,

a,=3, and A=0.75. The perfammance of this system is given in Fig. 4.7.
These exanples demonstrate the broad behavior obtainable from our

results as one varies the appropriate system parameters. In all cases the

system discriminates in favor of the short johs and against the longer jobs.

5. OCONCLUSION

Our purpose has been to generalize results in the modelling and analysis
of time-shared systens. The class of systems considered was the processor-
sharing systems in which various disciplines were permitted at different
levels of attained service. The principle results for M/G/1 are the
following: (1) the performance for the FB discipline at any level is given
by Eq. (3.1); (2) the performance for the FCFS discipline is linear with t
within any level and is given by Bqg. (3.2); (3) the performance for the RR
discipline at the first level is well known [8] and is given by Eq. (3.8);
(4) an integral equation for the average conditional response time for RR
at any level (equivalent to bulk arrival RR) is given by Eq. (3.12) and
remains unsolved in general; however, for the service distribution given in
Egs. (3.3a) and (3.4a), we have the general solution given in Eq. (3.13) as
derived in [11]. We further note tha* the average conditional response time
at level i is independent of the queueing discipline at all other levels.

Examples are given which display the behavior of some of the possible
system configurations. From these, we note the great flexibility available
in the multilevel systems. From the examples in Section 4, we see that
considerable variation fram previously vtidied algorithms is possible so
long as the mumber of levels is less than a small integer (say 5); however,

we see that as N increases, the behavior of the ML systems rapidly approaches
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that of the pure FB system.

Examination of the envelope of the miltitude of response functions
available with the ML system has suggested that upper and lower bounds in
system perfcrmance exist; this in fact has been established and is reported
in [19].
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Figure 4.4. Response Time for Example of D, = RR, M/M/1,
#=10,A=076,3, =20, n- 5.0
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TIGHT BOUNDS ON THE AVERAGE RESPONSE TIME FOR
TIME-SHARED COMPUTER SYSTEMS*

LBONARD KLEINROCK, RICHARD R. MINTZ, and JIUNN HSU**
Computer Science Department
University of California, los Angeles, California, U.S.A.

In this paper, same fundamental properties are established which apply to the average response

time functions for all time-shared

camputer systems. The first property is one of monotonicity.

The second is a conservation law which provides insight into the trade-offs available as one varies
the response time function by changing the scheduling algorithm.

The main thrust of the paper is to establish tight upper and lower bounds on the average response
time. All these equilibrium results are good for Poisson arrivals, arbitrary service time distribu~

tion and arbitrary (but work-conserving) scheduling algori

thms which can take advantage only of ar-

vival time and attained service time. Examples of these properties are given for a number of serv-

ice-time distributions and scheduling algoritims.

1. INTRODUCTION

We ‘are in the midst of a veritable explosion
the number of published papers which
give analytical results for computer systems!
This seems especially true in the modeling and
danalysis of time-shared computer systems.

It is fair to say that the recoghition of prob~
abilistic models as the appropriate method for
stulying these systems was that which permitted
the breakthrough in analysis. In particular, the
use of queueing theory has been most profitable in
this analytic work.

As a result of this flood of results, each ap~
plying to a slightly different set of assurptions,
it is natural that we should seek same order in
this enbarrassment of riches. For example, do
there exist any invariants in behavior? Can we
bound the possible range of performance, regard-
less of structure? What constitutes feasible per-
formance profiles for these systems? These, and
many nore, are reasonable inquiries to make amidst
the confusion of results.

In t.is paper we adopt the point of view that
such questions are important and mst be answered.
Our focus is on a class of models for time-shared
canputer systams. For these systems we are able
to state a mnotonicity property, a conservation
law, and tight upper and lower bounds on the sys-
tem performance as measured by average response
time.

It is worthwhile mentioning that numerous
papers have recently been published which address
themselves to bounds, inequalities and approximate
solutions to general queueing systems. Among

; .

“#This work was supported by the Advanced Research
Projects Agency of the Department of Defense
{DAHC-15-69-C-0285) .

#**This author (J.H.) wishes to ackinowledge his
gratitude to the Intermational Business Machine

CQorporation for the granting of an IBM Pelicwship.
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these are Marshall ([2,3], Kingman [4], Iglehart
[5%. Daley and Moxan [6], and Gaver [7] to mention
a few.

2. THE CLASS OF SYSTEMS

Our objective is to create some order among
many of the results available in the analysis of
time-shared computer systems. Let us consider the
class of systems described below.

Wa adopt the well-known (8] feedback
model for time-shared systems shown in Fig. 2.1,

DEPARTURES
-

OF CPU

Fig. 2.1. General Feedback Queueing Model

In this model it is assumed that the central
processing unit (CPU) is the only resource being
accessed. Jobs arrive aoccording to a Poisson
process with an average arrival rate A jobs/sec.
They each bring a demand for service by the CPU in
an anount equal to t seconds, where these de-
mands are chosen tly from the service
time distribution B(t):

B(t) = P(service time < t seconds] (2.1)
Wedofimﬂnmlmuofmwmasz

O - g - f "3 (t) (2.2)
0

!mm E denotes the expectation operator.




We further define the utilization factor®

p =2t (2.3)

o arival, a job enters the systam of queues
whore e woits for A "turn® at service. When, fin-
aily, his turn cames up, he is provided a quantum
of service equal to q seconds. If he requires
less than (or equal to) g seconds, he departs
upon campletion; if not, he returns to the system
of queues having been partially served, in which
case we say that he has an attained service of q
seconds. Eventually, he will be permitted a .sec-
ond quantim, etc., finally leaving when his total
attained service equals his required service time.
We assume that no overhead (in time) is incurred
in transferring customers in and out of service
(i.e., no loss or swap~time); it is possible to
account for swap-time {9} in these models, but we
do not pursue that matter here.

The decision rule which chooses the next custo-
mer to receive a quantum is referred to as the
schedul algorithm. We assume that the schedul-
ng algor: use only of A,B(t), a job's
afrivalt:lmeuﬂajd:'s attained sexrvice.

In this paper, we consider a very useful spe-

OEPARTURES
ARRIVALS O& i -
ki n CUSTOMERS
IN SERVICE,
EACH AT RATE I/n

Fig. 2.2. Feedback Queueing Model
for Processor Sharing

Response time is the interval measured from
when a custamer arrives demanding service until he
2antlfun¥miead.ﬂ:bramreqmim'
hdamted.g ’ .090 tine

T(t) = average response time for customer
requiring t seoconds of service

m:wtityhumnytakmnﬁumof
in-mmmmm«mmmwmqnn-
briun, which requires p < 1.

‘simowohnve P <1, we consider steady-state
results only, an exanple of which is T(t).

(2.4)
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perfarmance for time-shared systems for good reca-
son. In particular, it is usually desired that
short jobs (small t) be given preferential treat-
ment over leng jobs; this discriminatory perform-
ance is easily seen through the function T(t).

A function closely related to the average re-
sponse time T(t), is the average wasted or wait-
ing time W(t) defined as

Wit = T(D) - ¢t (2.5)

Furthermore, we consider a third related function,
W(t)/t which may be interpreted as the penalty
rate to jobs requiring t seconds of service
since it gives the ratio of the cost in time
(W{t)) which must be paid per second of useful
sexvice time (t).

It is convenient to introduce some additional
notation at this point. lLet us define

E -/' has(t) + (1 - B(x)] (2.6)
0 ,

whidtiaﬁxenu'mmtofﬁnservicetﬁnedis-
tribution if service times are truncated at x
seconds. Also let

2.7

(2.8)

Note that ;"-tn, p,=p and that W  is the
expected (backlog) found by a new arrival to
the queueing system® W/G/1 [11].

In sumary then, the class of systems we con-
sider is the class of M/G/1 processor-shared time-
sharing systems with zero swap-time and arbitrary
scheduling algorithms.

3. RESPONSE TIME FUNCTIONS

From the published literature, we find many re-
sults for processor-shared systems. Some of these
we deacribe in this section.

1. Batch-processing, first-came-first-
- served (FCFS)
In the FCFS system, the oldest job in the
system is given camplete use of the CPU

until it conpletes its required service.
For these systems, we have [ll1]

Sthe notation M/G/1, common in queueing theory,
denotes a single sesver system with Poisson arri-
\&lmpw.oe-s and arbitrary service time distribu-



ro—

I A
W(t) = W T =or (3.1)

2. Found-Robin (RR)
In the RR system, all customers share the
CPU equally. We have [10)6 ’

Wit) = I—Qt—p

3. Selfish Round-Fobin (SRR)

In the SRR system, all custamers with- the
highest value of "priority" share the CPU
equally; all others wait in the queue.
Priority for a job is calculated as8 aw + 8s
where a> B8 > 0 are constants and. w is
the time spent waiting and@ s is the time
spent in the CPU (perhaps shared) for that
job. The SRR system has only been solved
for exponential service time, i.e.,

t

(3.2

B(t) =1-e" t>0" (3.3)
In this case we Lave [12)
W = W, + 1{—:—3{17'6%9’-2 (3.4)

4. Generalized Foreground-Background (FB) '
The FB system shares the CPU equally among
all those jobs which have the smallest at-
ﬁ%‘,“""”’i“' For the FB system we have

Wt-c»tpt

=5 (3.5)

W) =

5. Multilevel (ML)

In the ML, system, a set of attained serv-
ice times {ai) is defined such that

Om=a;<acayc.cca cag == (3.6

When a job's attained service falls in the ith
interval [ai_l,ai) ¢ then the scheduling

algorithm followed. for this job is denoted D;

where D, ma’ be FCFS, RR or FB. The disci~
pline fo between the levels is FB. Re-
sults for these ML systems are reported in
(14) for arbitrary B(t) (with some additional
restrictions on B(t) when D, = R{ for
i>2. , gt
Note that the FCFS system offers nc discrimina-
tion based on attained sexvice time, whereas the
FB system discriminates as mxh as possible on
this basis. The RR systam is "fair®" in the sense

It is also true that we cbtain the identical W(t)
for the last-come-first-served system (ICFS).
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that the penalty rate W(t)/t is independent of
service time, t.

For these processor-shared systems, it is use~
ful to display, in one figure, the wasted time
w(t). This we do in Fig. 3.1 for the case of ex-
ponential service (see Eq. (3.3) with ) = 0.75
and t= 1.0 (thus p = 0.75). We purposely
superinpose the performance curves for sched-
uling disciplines. We are anfronted with quite
a selection of possible perfurmance functionsl

Nr

Fig. 3.1._A Set of Response Curves for
.. MW1, t=1.0, A =0.75, p» 0.75.

One might naturally inquire as to whether these
curves are confined to any particular region in
the (W(t),t) plane. The answer is definitely
yes,/ and we develop these and other constraints
in the next section.

4. RESULTS

In this section we present results
the response functions (W(t)) which are feasible
when the scheduling discipline is based only on
attained service times and elapsed waiting times
of jobs., In Section 4.1 below we describe several
fundamental characteristics of W(t) and, in par-
ticular, we give a conservation relationship which

' the response function must satisfy. In Sections

4.2 and 4.3, tight lower and upper bounds are de-
rived for response functions in the sense that for
ay W(H, W(t) <W(t) <W, (D).




4.1. A Monotonicity P%g.x and a
Omservation Lav for W

We are considering scheduling disciplines in
which each job is characterized by (1) its attained
service time, and (2) its elapsed waiting
time, t,. Therefore, the state of the system is
the nunber of jobs in the system and and
for each job. A particular scheduling discipline
may effectively ignore one or both of these para-
meters, but this information is assumed to be
available for each job. Because scheduling deci-
sions are made only on the basis of two para-
meters, the following statement is self-evident.
The history of a job requiring t; > t seoconds of
service from the time of its arrival at the system
wtil it has received t seconds of service is

independent of the exact value of t;., A direct
of this.fact is that W( is a non~-
decreasing function or equivalently
w238, (4.1)

In deriving W,(t) and W,(t) we shall need
mﬁnﬂ;multwl&dmhgimbelw. Fram (8] we
have t

(4.2)
where n(t) is the density of jobs in the system
with t seconds of attained service time. We de-
fine the "work" in the system at time t as the

additional time required to empty the system if no
new arrivals are permitted entry; this is.also re-
ferred to as the "unfinished work" and as the

"virtual waiting time.” The. mean work W in the
system can be expressed as

n(t) = Afl =B(]) W'(t) + 1)

ﬁ-f n(t)E [remaining service time for
R A a job with attained servioe

0 time of t)dt
or ﬁ'-/ n(t)f (t=1¢ ?(T dc
0 t

Swbstituting from (4.2)

- ‘ ®,
A= y‘ (L + J_J/‘ (t = HaB(T)at
0 0

By changing the order of integration

- * T g ‘
Weaf [f W'(e + 1) (7 - t)dr]am (4.3)
o Yo

Integrating the inner integral by parts

T
f (W'(t) + 1) (1 = B)dt

0
T

T
= (T = t) (W(1) +e| + [ M+ e

0 o0

-./'T(wm + tlat
-

Substituting into Bg. (4.3)

Wa Af:/'T(ww + tldt @B(1)
00 -

Aqin changing the order of integratica

W= Af MY + t]f dB(1)dt
0 t
- Aj W(t) + t}[1 - B(B))at
0

But in general, we have that

- )
: f tll - B(vlde = &
0

Moreover, the mean work in the system is known
{11] to be

A2
. w-
2T =0y
Thue we have the following conservation laws for
T™(t) and W(t):
2 ®
== J T - @5
0

(4.4)

—

NT%T' {W(t) f1 = B(t)]at (4.6)

We refer to Egs. (4.5) and (4.6) as Conserva-
tion Laws since they are based on the conservation
of average wnfinished work in the system. This
places an integral oconstraint on W(t) (and T(t))
as a second necessary condition, regardless of



scheduling discipline. The implications of the
oconservation law may be seen by recognizing that
{1 - B(t)] is a nonincreasing function of t.
Thus, it one had a given W(t) as a result of
same scheduling algorithms, and then changed the
algorithm so as to reduce W(t) over some inter-
val (0,tg), then the conservation law would re-
quire that the new W(t) be considerably above
the old value for same above tg. This fol-
lows since the weighting factor, 1 - B(t), is
smaller for larger t. '

4.2. The Lowar Bound

We claim that to minimize W(x):
discipline must

1. never service jobs with attained service
time greater than or to x while
there are jobs in the system with attained
service time less than' x, and

2. never a job once it has been se-
. lected for service until it has at least
x seconds of attained service time.

Under these conditions the response function in
the interval (0,x) 4is just the response function
for a nonpreémptive system with service times
truncated at x. For convenience we will assume a
FCFS scheduling discipline. In this case the re-
sponse function (denoted Wpcpg.yx(t)) has the
form shown in Fig. 4.1 (see, for example, [14]).
lbtethat"m_x(t)-o over (OpX)o The sched-
uling of jobs with attained service time greater
than x is of no concern in this argument as long
as condition 1 is maintained.

the scheduling

wu)‘

.

—
t

Fig. 4.1. Response for FCFS up to
X Seconds of Service

Let beﬂnmmworkinmelystanmhﬂ-v

ing wark to be done on jobs beyond providing x
seconds of attained service to each. In other

words, if a job requires t > x seconds of serw
ice and has received y < x seconds of service,
its contribution to is x ~y. By the sam
method used to derive Eg. (4.5) it can be shown
that

X *
-y M(t) + (1 - B(t))at
-

Now since x(t) has minimm slope (i.e., 0)
over the intBRET® (0,), and due to the monoton
icity given in Bq. (4.1), if any othex response
cxve W(t) is such that W(x) < W (X)

rust be such that W(t) < Wpepg o (

0<tgx Butundercmditionlabove, w has
its minimum value since work in this class is oon-
tinously decreased at maximum rate whenever there
17 7ud\uorkinﬂa system. Thoyefore, for any
wW(t),

X
M Mm + a0 - smat
0
X
> Af Mecps—(t) + t1[1 = B(B)]dt
0

Thus we conclude that W(t) < Wpwg_o(t) in (0,x)
is impossible and therefore W(x) > Wprpg_. ().
The lower bound Wy(t) is given by the waiting

time for the FCFS discipline with the service
times truncated at t, namely (14] -

E:
Wz(t) - W (4.7)
Note that Wy(0) = 0 and that Wy(=) = W; also
Wi (0) = Wg(") = 0.
4.3. The Upper Bound

In this case we begin with a discrete time sys-
tem,

Assume that the service time distribution is of
the fom

Prservice time = kq] =Py k=1,2,3,...

where q is the quantum as discussed in Section 2.
Therefore, the only possible service time require-
ments are multiples of g. We shall also assume
that arrivals may take place only during the in~
stant before the end of a quantum and that the
processor is assigned to a jo, for a quantum at a
time, The probability that an arrival takes place
at the end of a quantum is ) 80 that the mean
arrival rate is A. It should be clear that any
continuous service time distribution can be ap-
proximated arbitrarily closely by a discrete time
distribution by letting q approach 0. Also,

these restrictions on the service discipline and
arrival mechaniaw are effectively eliminated when
q-+0. Inthildimtetimmdelo\xgnlhr
maximize W(ky).

We claim that the following scheduling rule is
necessary and sufficient to maximize W(kg): no
ulneationofakﬂlq\nnmnismdehDanyJOb

same other job in the system waiting

'fu'iuja‘qanunm j # k. We rote in pass-

m.ﬂ:tn‘m scheduling disciplines will satisfy



We relabel the time axis so that t = 0 at an
arbitrary point in same idle period. The times at
which same job is allocated a kth quantum we call
"critical times." Let c¢; be the time that the
ith critical time oocurs.” We wish to maximize
cg (the average of ¢;) for some fixed 2, amd
we will show that to accamplish this it is neces-

sary and sufficient to satisfy the condition that
at the 41 critical time no job is waiting for a
7" quantum where j »¥ k. Certainly this condi-
- tion is necessary since if a proposed scheduling
discipline did not have this m then ¢
can easily be increased when the condition is not
satisfied as follows: follow the proposed sched-
ule until the point where the 2th critical time
would occur and t%ﬁnassignaq\nnumtoa job
waiting for its j (# k) quantum,

Since we have already shown necessity, to prove
the sufficiency of the condition for maximizing
Cyi : we need only show that any schedule satisfy-
ing the condition yields the same value for c;.
let A be any scheduling a ithm which satis-
fies the rule that at 2R critical ‘time no
job is waiting for a ™ quantum where 3 # k.
Let ag be the time at which the Lth job arrives
vhich will require at least kg seconds of serv-
ice. The state of the system at a, will, in
general, depend on the algorithm A. In particu-
lar, the mmber of critical times that have oc-
curred prior to a; (let this be s) is a func-
tion of A. Let Eplc, = ag|state of system at
ap] be the expected,value of ¢; - a; under algo
rithm A cuﬂitimeﬁonmestataofthesystan
at ag. The state of the system is given by the
mober of jcbs in the system, the attained scrvice
time of each job in the system and s, the mumber
l(;f critical times that have cocurred. Thus, we

e

B, [cy =~ ap|state of systems at a;)

= EA.(renaining work in system mot
requiring a kth quantum|state
of system at a!)

+ (£ - 8 - 1)E[lremaining service time for
job with (k = ))q seconds

of attained service)
+ (k = 1)q
+ X, qEA[cz - azlmu of the system
at al) : (4.8)
But the sum of the first two terms on the right~
hand side of this equation is equal to the ex-
pected arount of work in the system at a, given
the state at a,. Thus i
E,lc, - a,|state of system at a,)
= E, [work in system at a,|state at a,)
+ (k - 1)q '
+ “(k-).)q’h["z - a,|stats of system at a,)

. modmize W(kg)

Removing the condition on the state of the system
at a, we have

EA[‘:!. - all = EA[work in the system at all

+ Ok = g + ATy, Byl - ag)

EA[wm'k in systam at an) + (k=1)q

or EA[':JL - all = Tt
. (k-1)q

But Ep[work in systemvat ay) is not a function
of the particular scheduling algarithm and there-
fore FAICR. - ay] does not depend on A. Since
Elcy) = Elcy - ag] + E[ag] and the right-hand
side is independent of A, E[c)] is independent
of A. Note that the form of Eq. (4.8) depended
on A having the property that at c¢p there are

mjd;sinﬂxesystenwaitingforajﬂ‘quanum
where j # k. We have now shown-that this condi-
tion is necessary and sufficient to maximize
E[c,))(= c;).

Wemvshdvﬂ\atﬁaeqmeralzscl'\edulm:ule'to
i is the rame rule which maximizes
A applied for all L. We hawe

$3 - &3
W(kg) = lim 221 :

neo

= (4.9)

The a; are independent of the scheduling disci-
pline and the scheduling rule is neces-
sary and sufficient to individually maximize the
Cy. Therefore, the same

ficient to maximize W(kg), which establishes our
earlier claim. '

It should be clear that in a continuous time
system we can approach the maximum of W(x) by
the following rule: no job with attained service
time in the open interval (x - ¢,x) (for ¢ > 0)
is serviced while there is a job waiting for servw-
ice which has attained service time outside this
interval. By permitting € to shrink to zero, we
spproach the maximum for W(x).

One scheduling discipline which maximizes W(x)
is the two-level system in which jobs are scrved
FCFS in the first level up to x~ seoconds of at-

Queue has a lower pr
when the first queue is empty (see the ML svstems
. described in Section 3). This tan’
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satisfies the condition for maximizing W(x) and
therefore from (14] we have
W (t) = At (4.10)

. —t
u !(1-pg(I-p) 1-p,

necessary ad suf~

L

/



Note that "u“” aif= Wy(=), . that w\'l(O) = {,
and'that W)(=) = p/(1 = p).

4.4, Summary
ty tite @vrbon we have establishal the follow-
i B ey vl tid B adbgwiiien
™ 21 (4.11)
W'(t) 20 ° (4.12)

] - :2'
[ rwn-pwlae = rigy (413
0

- -
f Wt) {1 - B(t))dt = ,qup,- (4.14)
0

-~
Aty 2 to,

At
=gy SN Sy I p,

(4.15)

S. EXAMPLES

Four examples are given in this section to
demonstrate the natire of the tight bounds we have
cbtained. As a performance measure, the equili-
brium average waiting times, W(t), are plotted
as a function of t. We begin with the M/W/1 sys-
tam (i.e., Poisson arrivals and exponential serv-
ion). The response functions of Fig. 3.l are
given again in Fig. 5.1 with the upper and lower
bourds superimposed. At t = 0, the upper bourd
and FOFS start at the same point because, undex
the constraint of the conservatioa law, no other
scheduling algoritlm can give longer average wait=-
ing time at t = 0 than FCFS. The upper bound

. approaches the FB response asynptotically as t
approaches infinity; therefore, a customer with a
very long requested service time (as compared to
the mean) cannot be delayed much more than he is
with FB. The lower bound starts at zero (as does
the FB curve), increasing less rapidly with t
than the upper bound. It approaches the FCFS curve
‘asymptotically as t goes to infinity. Thus we
note that the least discriminating scheduling algo-
rithm (FCFS) touches the upper bound at t = 0 and-
formms the asymptote for the lower bound as ¢t
approaches infinity; oconversely, the most discrimi-
nating scheduling algorithm (FB) touches the lower .
bound at t = 0 and forms the asymptote for the
upper bound as t approaches infinity. The above-
mentioned behavior of the upper and lower bounds
applies not only for the M/M/1 system, but also
holds true far any M/G/1 system in general, al-
though the rate of convergence for the bounds to
their .espective limits varies for different serv-
ice distributions.

wis)

Fig. 5.1. Bounds on Response for M/W1,
t = 1.0' A = 60750 ’p = 0075.

Pbrﬂnamﬂml&mdmaeﬂuqsban
WE2/1 In this system we have

dB_ax_)Q_( = (2e* x>0 (5.1)
with mean service time equal to 1/u; the second

moment of this distribution is 3/212. Because
the second mament is smaller than that of the ex-

ponential distribution (whose value is 2/,
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the bounds are tighter in this example than the
MWW1 case, just as one would expect. Fig. 5.2
shows the behavior of this systemwith u=1
and A = 0.75. It is cbvious from the figure that
for t > 5/u, the uper and lower bounds have es-
sentially reached their asymptotic form.

In the third example we show the bounds for the
MMH,/1 systen, where H; stands for hyperexponen-
tial service distribution with

b 1 2% =,
Bw o.sme L+ 0.5ue Z x50 (5.2

We choose U; = Su, Uy = (5/9)u, resulting in a
mean service time of 1/u. The second moment of

this distribution is 82/25.%. Fig. 5.3 shows the
bdmrinrotﬂnwnz/lmhmwith us=1l am

A= 0.75. The and lower bourds
their ve ts at a slower rats than



Fig. 5.2. Bounds on Response Sor WE,/1,
t=1.0, A=0.75, p= 0.75.

Fig. 5,3. Bounds on Response for %2/1,
ts= 1.0, A= 0075' ps= 0.75.

eiﬂ:erWlorwzzllbecamofﬁnurqcnc-
ond noment.

For our last exanple we chooee the system M/W/1
where U stands for uniform service distribution.
For this particular exanple we have

40,25 2<x<6°

X . (5.3)

0 othexwise

8l

and i = 0.1875, t = 4,0, p = 0,75. Fig. 5.4
shows the behavior of this system. Notice that
when t > 6, the upper bound coincides exactl
with the FB curve and that the lower bo coin-
cides exactly with the FCFS curve. The procbabil-
ity of having any customer requesting more than
8ix seconds of servioe in this example is, of
course, equal to zero.

..F

3
»

bl LA
S el

Fig._5.4. Bounds on for MU/1,
t=4.0, A =0.1875, p = 0.75.

performance measure, W(t)/t, is given
5.5 for the M/W/1 case and is of interest
since (as mentioned in Section 2) it gives

Another
in Fi
to us

-\

\
(15 s LOWER DOUND
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.. —
. 4 s A n A ) ) e Seme—e— |
¢ ' [] 3 L} [ [ 4 [] ] L]
)

Fig. 5.5. Bounds on Penalty Rate for WW1,
ts 1-0" A= 0075' p= 00750
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samc penalty rate, regardless of his service time,
I, this scnse, cveryone is treated ogually in the'

PP System. The curwe representing FCFS is monotons
jraafly veqeagig with 1L, ml po Ve lenger jrba
Ly ol n annblen geminlly 1aleng b Vhin cane, sylon

Wity ndyght attspt W "pool® thelr roguests o
take advantage of this "quantity discount.” aAn-
other extreme exanple is provided by ¥8; W(t)/t
increases rapidly when t is small, then drops
slowly to a constant (p/(1-p}). A customer with

a long request can do better by breaking his job
into smaller independent jobs and submitting them
separately to the system (if this is possible) be~
cause then the penalty rate will be greatly reduced.

Fig. 5.6 shows the range of the bounds for the
M/W/1 system with p = 0,75, 0.5 and 0.25, respec-
tively. As can be seen, the region included be-
tween the upper and lower bounds for a particular
utilization factor p depends heavily on p;. the
larger the value of p, the greater is the verti-
cal separation between the two bounds, thus allow-
ing larger variation of the mean waiting times for
different scheduling algorithms.

0r

Fig. 5.6, Variation of Bowds for o/M/1
with p = 0,25, 0.50, 0.75.

6. EXTENSIONS

As we inplied in the Introduction, we have ans-
wered same fundamental questions regarding the
existence of order and structure in the analytical
results for time-shared camputer systems. Our ‘
principal results are given as a monotonicity con-
diﬁm (Eq’u (4011'4012))' a mmﬂm 1&1 (m.o
(4.13,4.14)) and tight upper and lower bounds (Eq.
(4.15)) on the response function W(t). These re-
"sults are exenplified by the curves given in Sec~
tion 5. We note here that although the results
were expressed for processor-shared systems, the
same type of results apply to the case q > 0.

We might cbeerve some additional properties
1
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which follow from our results. First we sce that
any W{t) may touch the lower bound at most.once
(excopt: over the sami-infinite interval t) <t

whon u(tl) = 1); the same may be said for the
upper bound,

Secondly, we'find that we are able to respond
to the following kind of specification. Suppose
that a designer requests that all jobs of duration
t S t* should have an average wasted “ime
W(t) <W*. Then if W* > Wy(t*), it is possible
to guarantee at least this behavior (for exanple,
by an ML system where the first lewvel is FCFS out
to t*). Such a specification seems to us to be
quite natural. The next cbvious need is to specify
the bounds on W(t) which exist for t > t*,

Lastly, we pose the nore general question which,
at the time of this writing remains unsolved,
narely, what are the necessary and sufficient con-
ditions for a given response function to be feas-
ible? This paper has presented some important
necessary conditions. )
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by Gary L. Fultz and Lecnarxd Kleinrock
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A study is made
store-and-forward

perfommance of existi.ng networks., major attempt has
been to classify routing techniques and to specify their
parameters as well as a means of evaluating their pexr-
formance. Using average message delay as a measure of
network performance, a nurber of routing techniques are
m.mdmtmoredcalmdmur simulation results.

mm

This paper considers message flow in a specific class
of networks denoted as store~and-forward computer-com-
mmication nets. Such nets accept message traffic from
external sources (camputers) and transmit this traffic
over sane route within the network to the destination;
ﬂﬁstranmissiontakuplaaowrmlinkatatim.
with possible storage of the
ate switching node dua to congestion. One of the funda-
of messages

very.
The requirements for such a systaa differ considerably
fram those of the telephone system emploring circuit or
line switching and from those of military commmication
networks required to operate in extremely hostile en-
virarments

The study cf routing techniques is important because
of the oentral role they play in the design and opera-

tion of iow cost canputer-comunication nets. The ab-
stract design of a low cost cation net-
work was first statad by Kl as follows:

minimize T (the average message delzy)

over the ( link capacity assignment l
design message priority discipline
variables ) routing doctrine ’ (L
topology
subject to

a suitable cost criterion and external
traffic requirement

All of the design variables are interdependent and a
general solution technique is unknown, although signifi-
mtpmﬁsbmmdefo:mmmtmm
cases, ‘71t 1L

Before the general solution of Eq. (1) can be under-
taken, it is important to determine how the variation of
the design parameters in this equation influences the
average message delay T. Here we address the routing
doctrine question. Key areas which require study are:
what should a routing technique achieve; how can routing
techniques be classified; how are routing algorithms
specified; what are the appropriate performance msasures
and; how are routing algoritims evaluated? Below, we

*This work was supported by the Advanosd Research
Projects Agency of the Department of Defense (DAHC-15-
69—-C-0285) .
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message at each intemedi-

attampt to answer these questions in relation to the
selected computer-commmnication network model.

II. THE COMPUTER-COMMINICATION NET

In oxder to properly characterize vhat an adaptive
routing technique (algorithm) should achieve, the uni-
verse in which it operates must first be specified.

This requires a characterization for computer-commnica-
tion networks.

'ﬂndauofmhnﬂumi&mdinﬂﬁsmreanbe
depicted as shom in Figures 1* and 2 and are modeled
after the Defense Department's Advanced Research
imﬁqmcy (ARPA) experimental camputer network. 9,

Figure 1. Network Topology
The characteristics of the network rodel are:

1. Each pair of nodas (Nj,-Nj’ czn be connected
by at most one dedicated high-quality (low
error rate) full duplex digital commumnication
line. :

2. Each comunication link has fixed capacity.

3. Each node has finite storage and operates in
a store-and-forward fashion,

4. Satellites ave not utilized as nodes.6

The basic unit of information passed between any pair
of nodes is called a "packat" with maximum size of ap~
proximately 1000 bits. When a packet is received at a
node, it is stored and checked for errors via an error

code. If coxrect and if this node is willing
to " * the , then a positive acknowledgment
is sent back to the precsding node indicating this fact;
otherwise, a negative acknowledgnent is sent back (nega-
tive acknowledgments, however, are not used in the ARPA
network) . When a node receives a positive aciuowledg-
ment, it destroys its copy of the packet; otherwise the
packet is retransmitted. If a packet is not destined
for the node at which it was received, it is relayed
(routed) further along its path to a neighboring node.

*The ARPA network topology has since changed signifi-
cantly. However, we continue to utilize it in order to
campare our current simulation and theoretical results
with those contained in Rafs. 12 and 13,



The routing procedure determines the path a packet tra-
whmammhﬂsmadesmdmnodeun
For exarple, the paths m = (5,6,16,8) and w; = (5,4,17,
8) are two of the many possible paths from Ng = 5 to
Np = 8 as shown in Figure 1.

The assumed internal structure of a node, shown in
Figure 2, consists of a store~and-forward switch re-
ferred to as an IMP (Interface Message Frocesscr) and a
HOST (external camputer system). The function of the
IMP is tr allocate storage for incoming packets, perfomm

FINITE
STORAGE

L~
IMP-TO-HOST LINK

HOST

B8 = SWITCH WHICH CAN BLOCK TRAFFIC
FLOW TO THE IMP

CPU = CENTRAL PROCESSING UNIT ROUTINE
Q = QUEVE

S = SERVER (REPRESENTS THE FINITE RATE OF TRANS—
. MISSION ON THE OUTPUT LINKS)

Figure 2. Bmic Nede Swucture

routing for packets which mst be relayed, admowledge
accepted packets and perform other routine functions
(i.e., packet errcr checking, circuit fault detection,
traffic measurement, etc.). In addition, the CPU rou-
timcmb]ockincmdmmssagesfzmzummm-
ficient storage is unavailable. -

» which originate at a BOST, have a maximum
length of approximately 8000 bits. .The IMP segmente a
HOST's message into packets (i.e., as many maxizsm sized
packets as necessary, plus a "remainder” packet). These
packets are.then handled by the network as independent
entities until they reach their destination node. There
the packets of a message are collected and the message
is reassenbled before it is transferred to the Jdestina~
tion HOST. Messages which consist of anly 2 single
packet are given higher priority than multj-packet mes-
sages so that the network can support intraactive users.

‘Using this network nodel, the messace routing require-
ments for the computer-commnication network cmn be sim-
ply stated:

1. Message routing should insure rapid and error-
free delivery of messages.
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2. The routing technique should adapt to changes
in the network topology resulting from node
ardcmmpiadmmﬂcfnl\nes.

4. Padeudnuldbemtsduwxdnoiesﬁatam
congested or temporarily blocked due to a full
storage.

1I1. CASSIFICATION OF ROUTING TECHNIQUES

It is desirable to classify network routing tech-
niques in order to gain insight into their structure,
complexity and performance; from this, one may then com-
pare them as candidates for operational network algo-
rithms. The two major classifications selected are

(1) deterministic, and (2) stochastic techniques. Deter-
ministic routing techniques compute routes based upon a
given deteministic decision rule and produce a loop-
free routing procedure (i.e., packets cannot became
trapped in closed paths). Stochastic techniques, on the
‘other hand, operate as probabilistic decision rules, uti-
lizing topology and either no information about the
statce of the network (random routing) or estimates of
the present state of the network. With these techniques,
packets may be trapped in loops for short time periods.
Figure 3 shows a more cmpleta classification of the ap-
p}ici:la routing techniques.

ROUTING ALGORITHM CLASSIFICATION

1. DETERMINISTIC TECHNIOUE 3

ALL
. n.ooomc<
SELECTIVE

® FIXeD
o NETWORK ROUTING CONTROL CENTER {NRCC)

PRERENT SCHEDULING
© IDEAL OBSERVER ;

STOCHASTIC TECHNIQUES
P T
© DISTRIBUTED <WHROMUS UPDATE (PERCOLATION)

PERIODIC UPDAYE (NEAREST NEIGHBON)

2

® ISOLATED <!mm QUEUE + BIAS
LOCAL DELAY ESTIMATE

Figers 3. Busting Algeritwn Chamiticstion

Daterministic Techniques
Tie four basic detemministic techniques are:
1. Flooding. Each node recejving or originating a

packet transmits a copy of it o "all® outgoing links
or over a set of "selective" outgoing links; this trans-
mission occurs anly after the node has checked to see
that it has not previously transmitted the packet, or
that itismtﬁndshmﬂmofﬂnpadet. This tech-
niquehasbemdimsedbyaoelnandmblcy Their -
conclusion is that the inefficiency of this technique is
tolerable if one has only a few messages to deliver.
However, a large wolune of commmnications traffic neces-
sitates more efficient routing techniques. Another draw-
back to this technique is that each node requires a mech-
anism to racognize previocusly transmitted messages.

2. Fixed . Fixed routing algorithms specify a
unique path #1{Ns, «.os (route) followed by a packet
which depends only upon sburce-destination node pair
(Ng,Np) . To acconplish this, each node has a routing



A :

table similar to that shown in Figure 4. NEXT NODE table ie then formed by choosing, for each row (say the
If a packet must be relayed, its destina- NUMBER ith row), that output line nurber OLy (i) whose value in

tion is used to enter the routing table. delay table is mi as follows:
The entry contained in the routing table the minigam

. .
specifies the next unique in the i) s min T_(i, 2)
packet's _path. l<J.e.~i.m.'wcac'k]-E":'e5 and a“‘ ) -{ } J,(A 'LN) (
P!ossexi. have examined several of these In

techniques. Fixed routing techniques re- where {I,} is the set of output line nurbers for node J.

quire completely reliable nodes and links,
except for the occasional retransmission
of a packet due to channel bit errors.
However, they do allow for highly effi-
cient high volume traffic flow and are
very stable.

Figure 5 shows an example.

OUTPUT LINE

e DT
1/02101}03]04 L, {1

3. Network Fouting Control Center
(NROC) . With this technicque, one of the
network nodes is designated as the NRCC.
This center collects performance informa-

DESTINATION NODE NUMBER

§ elele |l TEmi =0
E
§

ifo1]03fo07]05 =1L 1

the network. Camputation of the routes Reuting Teble

by the NCRR is:done on a glcbal basis and this insures
loop-free paths between all source-destination node

. Thus. a fixed routing procedure is maintained
betsween NROX updates. :

There are a nurber of drawbacks to this technique.

oL, () = MIN T, GiL,)] ©

. VBN E

nNjoeloa]oo]u2 «IN

®* &
[}

;

By the time the nodes begin using the new routing tables, DELAY TABLE ROUTING TABLE
the performance information that was used in the camputa- . . ' .
tion of the routing tables may be out of date in rela- Figure 8. Node J Delay and Routing Tables

tion to the current state of the network. madq.i.tion,

el - The menner in which the estimates T;(., .) are fommed
4. Ideal Cbserver Routing. This tecmique is essen- and updated and how often the delay tables are interro-

tially a scheduling preblem. Each time a new packet gated depends upon the specific structure of the routing
~ enters a node from the HOST, its route is camputed to algorithm.

uon the carplete present information about the packets In the shortest queue + zero bias algorithm, a packet's
already in the network and their known routes. If the route is selected by placing it in the shartest output
ideal chserver has information about the occurrence of ~ chamnel queue. This is essentially Baran's Hot Potato
futire events, then this information could also be uti- routing amceptl' . Since the route selected is inde-
lized in the camputation of the route. This technique  pendent of the packet's: destination, the delay table

is obvicusly impractical for an operational network, but would require only cne row, where the row entries would
from a theoretical viewpoint, provides the minimum aver- reflect the cutput channel gueue lengths. The non-zero

may be carpared. , a distrihuted routing . .
Stochastic Techniques . In the local estimate algorithm, a packet's
. . © mnsaa'?tﬁ%aaq. (2Y. The delay table is up-
The three basic stochastic techniques are: dated after a packet is recaived (say at node J) by the
following scheme
1. Random Routing. Random procedures are

18} A (R A (R,
node to visit is made according to some probability dis- T,(D=S, ) o, = K, T (DS, )a1g + Ky°TIN(S,0) (3)
tribution over the set of neighbor nodes. The set of J IN el Rl 7 I“ e xz

neighbor nodes utilized in the decision rule can be "all" where

of the connected nodes or can be based "selectively®

over that set of nodes which are in the general direc- TIN(S,J) = the Time the packet has spent In the
tion of the packet's destination. Network traveling from its source node
: ) - 8 to the cuxrent node J,

L bt o R G ,
ous I ve shown that they .
are highly inefficient in temms of message delay, but lN " :mmhfmrlm Iy

are extremely stable (i.e., they are relatively maf- 0
fected by small changes in the network structure). of the full-duplex pair upon which the

. packet entered node J,
2.1solated and 3. Distributed « All of the
isolated ana distributed routing ggon% operate in &M
basically the .same manner. A delay table is formed at
each node as shown in Figure 5. % entries g‘J(D.LN) Kl and K; are constants.

are the estimated delays to go fram the node under con- This technique, called baciwards leaming, has been ex-

gideration (say node J) to same destination node D using . 3
line [y as the next step in the path to D. A routing tensively investigated by Barani. Boehm and Mobley
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offer modifications to the basic technique (Eq. (3)) to table entries are
improve its performance. . A "
Ty0eLy) = oMLy + o, + F) )

In the distributed routing techniques classification,
all muﬁ:mm utilize the same basic techniques where Q(M,Ly) is the queue length of line mumber Iy at
to compute and update the dalay table estimates, but the poge tan i { .
instants at which these tables are updated and the route i T conAtant D, can B intarpreted in tvo weys
sel e ais the poas Pirst, if its value equals the average time to transmit
I.Ie:m’ zmmot the‘ t'ezsmapaﬂing upon parti a packet over an outgoing channel, then neglcctm; chan-
tructu algori . nel propagation delgys, represents the mim.mun average
There are basically to different mechanisns Wich  smpive s voiated Londly ix & Linory poatod mto st
cause entries in the delay tables to change: (1) as the delay table estimatn T,(D,Ln) = N*(J,D,Ly)* ::hem
packets are placed an lor taken off) an output chamnel % A i % oLy DLy .DP
queue, all delay table entries in a colum correspond- N (J/D)Ly) is the nurber of lines encountered in the path
ing to that output line must be increased (or decreased) ¥(J.D) when a packet leaves node J on line Ly. Thus, by
to reflect the change in expected delay for the channel; Vvarying D,, we can control the degree of alternate rout-
and (2) when Gelay information fraom neigbboring nodes is ing and itivity of the algorithm to small variations
utilized to update the delay table estimates. In the in queue lengths. That is, if D, is large campared to
latter case, the following procedure is used. :‘emw@wﬁl&wg;ﬁ, mtheﬁp;m-glns-
sage tend o paths wi
Suppose a decision at node J has been made to inform smallest N*(S,D,°).
its neighbors (say N;, N, and N,, as in Figure 6) of its

current minimmm estimated del to reach all nodes There are two methods which can be employed to cause
within_the petwork. Node J forms a minimum delay vector the transmission of the delay table wpdate vectars Vj:
Vr = (T(1),T(2}, ...), where the KT camponent " (1) The periodic updating algorithm forces these trans-

o - nd transmi neighhors missions at a ic rate (as is currently done
-T(K) mh}l §J(K'IN) o » YJ' fo it ’ in the ARPA network) and (2) asynchronous updating
{I“ - algorithm allows these transmissions chronously;
this transmission can occur after the youting of a pack-
et (via Eg. (2)) on lire (1) 4if T (i,0lyh(i)) has
changed by more than a specified amount (a threshold)

synchronous routing
shortest queue + bias algorithms (with bias equal -to Dp).

The choice cf routes is determined as follows: If the
update mechanism is periodic, then the set of routes ob-
tained vis Eq. (2) is held fixed until the tables are
again updated; in the asynchronous case, Eq. (2) is used
to0 determine the route of each packet.

Of all the stochastic techniques, the distributed
routing algorithis are the most efficient for handling
line and node failures, Once a failure is determined
(see Ref. 9 for procedures utilized in the ARPA network),
the proper entries in the node delay tables can be forced
to remain excessively large as long as the failure per-

sists.
Py Retuming to Figure 3, the arrows on the right-hand
T side represent (fram tail to head) increasing complexity
Py and expected performance of the algorithms. Of all the

5 routing techniques shown, we feel that the distributed
e stochastic routing techniques have the best potential
performance to offer in operational store-and-forward

T |=min T k1) computer-conmunication networks. These techniques oper-
. L . ate essentially as distributed network routing control
. centers and can adapt rapidly to link and node failures
. :: as well as to changing traffic conditicns.

~
Ti™
VECTOR Y,

IV. NETWORK PERFORMANCE

: In order to design optimal computer-commmication net-
Figure 8. Minimum Deley Yector Transmission works or to assess their performance, one requires quanti- o
tative measures of network performance. There are basi-
cally two classes of performance measures. The first
. : class does not relate in any simple way to individual
N, and N,). Upon receipt of a minirum delay vec- Messages in the network, but rather to the perfomance of
t(:P 2 ¥ Pt particular conponents that compose the network. Examples
r, a node (for exarple N;) adds its current output of such performance measures are: average channel utili-
Line queue length (line 1; for this example) plus a zation; nodal storage utilization; and channel exror
mmtbptnallentriesmﬂlevectoryam:eplm rates, Many of these perfonmance measures can be com-
colum 1 (corresponding to L) in its delay table with puted analytically. The second class of performance mea-
these new values. Mathematically, the updated delay sures relate more directly to individual messages and
: more definitive statements about overall network perform=
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anca can be mde. An example of such a performance mea~ tor FE (called the Effective Datu Rate) which allows us
sure is the measured distribution of time to transmit a to study the average message delay as a function of net-
message through the net. However, among the possible work loading. Figure 8 shows the average message delay
performance measures, the aver. delay is the
anly one that has yielded to ﬁysis. §5 ﬁﬁm, it mr- ® = SIMULATION DATA
also reilects the following network phenamena in its
carputation:

+ Message delay due to formation of queues within

tha nodes o 300

PREDICTED MULTI-PACKET
- MESSAGE DELAY
ey (LOW PRIORITY)

* Nodal processing delays

» The decrease in effective channel capacity due
to the transmission of acknowledgments and rout-
ing information within the network

* Negative acknowledgments causing packet retrans-
mission

» Adaptability of the routing algorithm to varying
traffic loads and channel and node failures

* Packet looping caused by mamentary errors in

PREDICTED SINGLE-PACKET
MESSAGE DELAY
= (MIGH PRIDRITY)

-
8

AVERAGE MESSAGE DELAY IN MSEC
T

>
p

estimation of the required routes by the routing 0 L N '
algoritim, and ' 3 = S0
* Nodal storage blockage PERCENT MULTIPACKET MESSAGES !
In earlier Wﬁm netst! and canputer
cnmnication ne &2, Kleim?cksuﬂiedsudnmu Figure 8. Mamsage Delay Varsus Mix (RE = 1

using methods from which he showed
pravide an effective method for the camputation of the
average delay of single messages using fixed for the two priority classes as we vary the mix of short
. Pultz® has modified these models to (single-packet) high-priority messages and long (multi-
rore accurately predict the single packet message delays, packet) low-priority messages, while maintaining a con-
In addition, he has removed same of the independence as- stant average input data rate to the entire net. For
sumptions discussed in Ref. 11 in order to handile the the fixed routing procedure, we see that the average mes-
nﬂﬁpadetmsageusehﬁques?mdsshwam- sage delay is adequately predicted by the analytic re-
parison of simulationl0+12 and analytical n,sultss for a sults. However, when cne assesses the perfarmance of sto-
chastic routing techniques, these cm:vei do no;rmﬁind;
160 typical network performance. Kleinrock™* ard 15
e = SIMULATION DATA have given mathods to analyze random routing procedures.
Here we give a method of estimating average single-packe
message delay for the isolated and distributed stochastic
Touting procedures. .

We begin by noticing that the isolated and distributed
algorithms operate as fixed routing procedures over small
periods of time., As time progresses and the algoritim
adapts, it utilizes various combinations of fixed routing
procedres. Of interest is that fixed routing procedure
which minimizes the average message delay for a given net-
work loading factor FE. PFigure 9 portrays the average
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fixed routing procedure utilizing the network configura- < \
tion shown in Figure 1. Both the analytic and simula- LY
tion models reflect an assumed traffic matrix (IM] whose /] .

entries give the average traffic flow requirements in
bits/second between source-destination pairs of nodes.
In Figure 7 we have scaled all entries in [TM] by a fac- Figurs 9. Aversge Mowsage Deley Profile




single-packet message delay as a function of R and
various fixed routing procedures. The lower envelope
of all these delay curves reflects the minimum average
message delay utilizing fixed routing algorithms. We
have a procedure formthh\gthislomrmvehpea

The horizontal line of value Tgp is the theoretical
minimum average message delag a.ng represents a solution
of the shortest path problem® for R = 0. The shaded
portion of the figure represents a region of operation
which can only be penetrated if the stochastic routing
algorithm happens to take exquisite advantage of the
instantaneous characteristics of message flow within the
network to produce a smaller average message delay than
the best fixed routing algorithm. To date, none of our
simulation results has penetrated this region. This :
indicates that the lower envelope delay curve is a good '
meagsure of attainable perfonnance for stochastic rout-
‘ing algorithms,

For the periodic updating algorithm, there are two
parameters which may be adjusted for performance optimi-
zation (Dp and the pericdic update rate Rj) for any
value of FE. Figure 10 shows this perfonmance as a
function of--Dp- -for various values of with RE= 1.
These delay curves reflect the additiomal message delay
caused by the presence of the routing update traffic
flow within the net. For each routing update packet
(which contains the vector Vj), its line transmission
time, Ty, utilized in the 'irulation program was
0.8Tp, where Tp (= 12.6.msec) is the average line
transmission time for a single-packet message (average
packet length in bits divided by the line capacity in
bits per sec).

-
o
o

[~ 2Ry

- &= SIMULATION DATA

B

!

AVEARAGE SINGLE-PACKET MESSAGE DELAY IN MSEC

wf T\_
LOWER ENVELOPE BOUND
| J
0 100 200
» Dy IN MSEC
Figure 10. Peviodic Updating Algorithm (RE = 1)
For small Dp, the simulation program shows that

many loops exist in the fixed routing procedure utilized
between delay table updates and thus produces a large
average message delay as shown in the figure; the higher
-values of shown permit better adaptation to the
traffic, even offsetting the increase in traffic due to
these updates. Although not shown in the fiqure, lim-
ited simulation data indicates that the average delay
for R;= 20 updates/sec is larger than for Rys= 10
updates/sec; thus RYO canrot be increased indefinitely
without suffering a loss in perfonmance.

89

. minimm delay vector,

For large (60 msec and greater), little evidence
of looping is found. The average message delay for

= 200 msec is within two msec of the simulation re-
sult at RE=1 for the fixed routing procedure based
upon the solution of the shortest path, zero-load prob-
lem. This indicates that the delay table updating can-
not, for this value of Dp, adapt to the fluctuations
in network traffic so as to lower the average message
delay. However, the algorithm can still adapt to line
and node failures armd the delay and routing tables would
reflect these failures. For the simulation data plcotted
in Figure 10, the minimmm average delay occurs at

= 60 msec, which is approximately five times as large
as the awerage line transmission time Tp fora single
packet. In the solution of Tgp for this network, the
longest route. also contains five lines. Further invest-
iqation is required to determine if there is a similar
cbservable pattern for other values of FE and for var-
iations in the traffic matrix [M™M] and network top-
ology.

For the asynchronous updating algorithm, there are
also two parameters which can be adjusted for perform-
ance optimization (Dp and the threshold values). Here
we consider constant thresholds (adaptive thresholds
will be considered in the future). The simulated updat-
ing procedure operates as follows: A copy of the new
Vy, is retained in node J each
time it is formed for tirgy. As packets are routed
at node J via By. (2), the minimum delay corresponding
to OLy(i) is compared to its wmmﬂing entry T(i)
in the stored vector Vj as shown below

1T,(0) = 5Lay (i) | = a75(0) (s)

If 4T (i) 2 threshold, then the update procedure is in-
is shown in Fiqure 6. Otherwise, no update ocaurs.
The mti.vaf.ion, of course, for utilizing thresholds is
to sense changes in the traffic distribution (delay) and
only update when these changes are pertinent as opposed
to the periodic updating algorithm which forces updates
even when the delay tables remain static. Figure 11
shows the algorithm performance as a function of Dp

THRESHOLD
o = SIMULATION DATA 8
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Figure 11, Asynchramsws Updsting Algorithm (RE = 1)



for various threshold values with FE. = 1. The curves
labeled (N) indicate normal operation of the algorithm
(Ty = C.8Tp), while the curve labeled (2) ocorresponds
to Ty = 0. Thus, the differen> between the two 50
msec threshold curves represents the increase in average
message delay due to the presence of the wpdate traffic
within the net.

The asynchronous update algorithm does not exhibit
the distinct minimun message delay as a function of
as found for the periodic ypda'= algorithm. Also, no
correlation was found between the number of updates and
message delay for a fixed threshold value, even though
the nurber of wpdates increassd as increased (ex-
cept for the dip in the 50 msec d curves at

= 60 msec). For a fixed I} 2 60 msec, there is a
correlation between average message delay and threshold,
the minimm being at approximately the 50 msec threshold,
which lies between the 34 and 100 msec thresholds.

Perhaps the most interesting delay curve shown in
Figure 11 is that for a threshold of 100 msec. For
&s 34 msec, no updates occurred during the similation;

us the algorithm operation reduced to the shortest

ue + bias class. However, line and node failures
wEI' d cause the algorithm to ypdate. It is quite pos-
sible that the threshold test (Eq. (5)) ocould be elimi-
nated and ydating forced anly when a line or node fail-
we is recognized. This requires further investigation.
For < Tp msec, the algorithm becomes highly unstable
and many loops appear in the routing. This accounts for
the large increase in delay, as the figure indicates.

Finally, Figure 12 shows the best simulated perform-
ance of three routing aleoritims (periodic updating,

o SIMULATION DATA

A THRESHOLD = 00 M3EC
8. THRESHOLD = 100 MSEC

AVERAGE SINGLE PACKET MESSAGE DELAY IN MSEC

asynchronous updating and shortest queue + bias) as a
function of the network traffic loading factar RE. The
lower envelope represents the achievable average message
delay for the best fixed routing scheme (although it
would vy with FE), but has not as yet been simulated.
However, the results shown in Figure 7 indicate that
simulation should agree with this theoretical curve.

The periodic updating algorithm is shown to be infer-
ior in performance to the other algorithms simula*=d.
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Apparently, utilizing a fixed routing procedure between
updates causes increased rongestion within the network
and thus increases messag: delay.

For a moderate threshold value (100 msec), the asyn-
chronous updating algorithm achieves the same perform-
ance as the shortest queue + bias algorithm (because no
delay table updates were initiated during the simula-
tion). The 60 msec threshold value produces a very
interesting result. As RE approaches 1.25, the asyn-
chronous updating algorithm performs better than the
shortest queue + bias algorithm. This shows that the
algorithm is utilizing the information contained in the
minimum delay wctors Vy to adapt to the fluctuations
in network traffic flow. Further, it indicates that
the presence of the delay table updating traffic within
the net does not necessarily cause an increasc in the
average message delay.

Before a more detailed canparison can be made among
the algorithms, further understanding of the relation-
ship hetween DO, and R; or the threshold value nust
be gained. In addition, line and node failures must be
similated in order to determine how rapidly the algo-
rithms adapt and what average message delay they produce.

V. CONCLUSIONS

We have presented a meaningful overview of routing
techniques available for cation networks
and have developed the structure of routing algorithms
which appear to be the most promising for operational
networks. The main thrust of cur research has been to
develop models of network performance and routing algo-
rithms and carpare their performance via camputer simu-
lation. Moreover, p: i measurement data (time
dalay measurements, degree of alternate routing, etc.),
callected by (vle* on the ARPA network, indicates gen-
eral agreement with our simulation results. We are now
in a position to campare our analytic and simulation
models with real network performence data.

We have demonstrated that fixed routing procedures
perform most effectively fram among our many camparisons;
however, such procedures cannot adapt to variatioms in -
network traffic and topology. The adaptability of our
distributed stochastic algorithms provides efficient
performance under such variations and appears.as strong
candidates for use in store-and-forward camputer-com-
mnication nets.

.
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NODAL BLCCKING IN LARGE NETWORKS*
by Jack F. Zeigler and lLeonard Kleinrock

Computer Science Department
University of California, los Angeles, California

ABSTRACT

A theoretical study is given for store-and-forward
comunication networks in which the nodes have finite
storage capacity for messnges. A node is "blocked"
when its storage is filled, otherwise it is “free." A -
two-state Markov model is proposad for each node, and
the nutber of blocked nodes in the netwark is shown also ! FROM OTHER IMPS
to have a two-state Markov process representation.

Digital camputer simulations substantiate the theoreti- *_ |

cal results. I.__ -4 _l

INTRODUCTION
BUFFER

Consider a store-and-forward camunication network
(e.g., see Refs. 1-5) consisting of nodes having finite
storage space for messages. During periods of high | BUFFER
traffic intensity this storage can be expected to £ill
from time to time. In this condition the node must re- |: MAIN
fuse incaming messages (which might be accamplished by BUFFER
sending negative acknowledgments) and we then say that STORAGE
the node is "blocked.”

As soon as one message is transmitted by a blocked
node, it becames a "free" node. It remains in this
state as long as there is at least one empty space in 3
storage that could be used by an arriving message.
When the storage fills again, the node re-enters the -
blocked state. l_______________l

> TO OTHER IMPS

BUFFER |

BUFFER

ERERRN

THE MODEL IMP

Pigure 1 shows a simplified model of such a node in I FROM HOST TO HOST
the terminology of the ARPA networkl™5. fThe Interface
Message Processor (IMP), when free, accepts messages Figure 1. Schemutic of a Node
into its main storage fram two sources: (1) other
IMPs like itself, and (2) a HOST which generates and '
receives messages (as a sovrce and terminal) and com-

municates with the rest of the network by means of the .-
IMP, Message bits are sent in parauelb{o the message  difficult for at least three reasons. First, it involves

buffer serving the appropriate output line, as deter- networks ~{ qucues, for which only stationary results at
mined by the final destination of the message, and are  best can generally be dbtained. Second, the pertinent
then transmitted serially to that neighbor. Any of stochastic processes are dependent, for if a node becavws

these output lines can become blocked, thus preventing blocked, it canmot accept messages fram its naighbors
their lﬁ:[.m ) and t:hea'x storage will tend to £fill at a faster rate.

Finally, it is a transient queueing problem and even the

In this paper we study nodal blocking caused by the  Simplest of these is very difficult to solve. (For exam-
finite storage roam for messages in the IMP amd the ple, the queueing system with Mariovian arrivals, a
overutilization of the system. By overutilization, we  $ingle exponential server, and unlimited waiting room nag
mean that when the node is acoepting messages, its aver- modifisd Bessel functions in its time dependent solution®.)
age arrival rate equals or exceeds its average service .
rate (which is the total output channel capacity divided ~ Since we camnot solve the problem exactly, our goal is
by the average message length). Elementary queueing to make good amrcndmtigxs that' allow us to analyze the
theary$ shows that if (1) the system is underutilized,  SyStem and characterize its blocking behavior in some way.
and (2) there is storage space for approximately twenty TO this end we make the following assumptions:

messages Or more, then under fairly general conditions
ﬁxe::gwul be gséenuauy no blocking. 1. The HOST cannot became blocked (it is an infinite

sink)
Nodal blocking is a transient effect which should oc- .
cur only at peak hours during the day in a well-designed 2.a. Input traffic fram the HOST is Poisson
systam, but once started it could propagate in both

ce and time. The analysis of this propagation is b. Traffic on all lines has the same averaye rate
o ¥e P 80 that total average ‘raffic into each node

is o messages/sec.

*This work was supported in part by the Advanced Re- .Aa. engths eponentially distributed
search Projects Agency of t“.e Department of Defense 3.a. Message 1 are o
(DAHC-15-69-C-0285) and a National Science Foundation
Traineeship.
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b. Service (transmission) time on any lin is
therefore exponentially distributed such
that for a node with k blocked neighbors,
the rate at which messages exit from that

rode is u(k) messages/sec.
4. Prcbability of an enpty queue in the IMP is
approximately zero (since the system is assumed
to be overutilized)

ANALYSIS AND RESULTS

Under these assumptions we arrive at a simplified
blocking model for a node in the network, and its de-
scription as a two-state Markov process is given in
Figure 2. If the node is blocked, i.e., in state b,

Figurs 2. Blocking Model for an tmp

lm

itbecanesfrﬁinﬂ\emtimtantoftﬁne At with
probability ik

neighbors it i.s experiencing at that time., Similarly,
if the node is free, i.e., in state f, it becames

locke?ki.ntl'emtinsuntoftime At with probabil-

At where k is again the number of blocked

Be].ow we show the appropriateness of this model.
First, we require the laplace transform of the inter-
time probability density = D(s). For any
node let p = P [nonempty node] and let the laplace

At where k is the nuvber of blocked

and, by the assumption of exponential message lengths,
the departure process fram each output line constitutes
a Poisson stream when that neighbor is not blocked.

Y (R)_S-kum)

v« o M k'o,l; X XN ‘ (3)

where u(°) is a given system parameter and represents
+he maximum message departure rate from a node. This
set of nurbers is merely an illustration; any conbina-
tion can be treated by this model. These results show
that we can approximate the time spent in the blocked
st&)te as being exponentially distributed with parameter
u .

The time spent in the free state, however, is distri-
buted as the busy period in a queueing system with finite
queueing room for custamers, as we now show. Oonsider
the state transition dlagram or Markov chain model for
our single node qurueing system shown in Figure 3a,

o . o o o o o
OROZORONEN RO
@ H » @ K K

a3) QUEUE STATE TRANSITIONS

»

b) DUAL QUEUE STATE TRANSITIONS

Figure 3

transfomm of the probability density of the interarrival

time process be A(s). Because we have as
service time is exponential with parameter u(k), we
lcwﬂutthelaplacetransfomofd\e?ﬁ?ax
conditioned on » nonrempty system is /6 + p
Therefore,

(k) (k)
D(s) = —ﬂ—aa- + (1 - p)A(s) —:—-na-
LI}

s+

By assunption (4) we have p ¥ 1
‘. i) u(k)
. . D(s -———-m-
s+
which says that the departure process is a Poisson
stream,

We have assuned that the traffic on all lines has
the same average rate.

output lines from each mode. All of these lines are

equivalent (except that the HOST cannot became blocked)

If, for example, every node has
exactly four neighbors and one HOST, then there are five

that the

ﬂ\enmbez‘sirxsidetherﬁmlesrepmsentthenmberof
custaners in the node. Custamers arrive in a Poisson
fashion with parameter o, and depart after receiving

' (1) service (exponentially distributed with an average of

1/u seconds). A busy period begins when a custamer ar-
rives to find an empty system (at which time he immedi-
. ately enters the service facility). Custamers arriving
during his service time form a'queue behind him. With
each arrival the system moves to the right along the

(2) gtate transition diagram, because the mumber in the sys-

tem is increased by one, and with each service cample-
tion, i.e., departure, it moves to the left. The busy
period ends the first time the system goes empty after
initiation of {he busy periocd.

We now consider a dual queue in which the roles of
service and arrival are reversod, and the numbers inside
the circles now represent the nurber of empty places in
storage that could be used by arriving messages (see
Figure 3b). The free period of the IMP begins with the
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departure of a message fram a previously filled system, Llet Pk(t) = P[k neighbors blocked at time t] (8)
i.e., no empty places for arriving messages. With the
transmission {departire) the system moves from state 0 and let p(t) = P[node blocked at time t} (9)
to state 1. It continues to move to the right with each
tranmminsion and to the left with each arrival. The Then, from elementary considerations, we have (correct
free period ends the first time the system returns to to within 0(At))
the 0 state. The correspondence betveen the primal and
dual queves is perfect; thus any results cbtained for 4 (x) 4 (x)
the busy period in the primal system are applicable to  p(t+at) = (1-p(t) 3 P at + p(e) - kz_;op"(t)u at)
t.hedual c&em free periodinthemp simply by substi- k=0
for ¢ o for u ® _ (0 (0)

where from Bg. (3) v =y’ - (k/S)u

The busy period for a finite qu=ueing room system is x) () ©) ©)
difficult to obtain, but the result for unlimited queue~- and fram Eq. (6) A =mg-y =20 -y + (kX/S)u

ing roam is well known. The probability density of the )
lergth t of the busy period in such a system is far o>y
‘We also note that
pt) = L & Wt 1 e/ “ Y
tv’5 PR (10)
where p, the utilization factor = (0/u) <1 and (£ +88) - p(t) _ (K)
l{b(:i‘) is t.g:rmdi iedlgesus:l fmctionf of the ﬂrst Thus, £ = (1 - p(t)) Zp {t)A
of or one size of the

is greater than 20, the solution for mlhnitedqueueing

room is a good approximate solution to the limited queue- 4

ing roam problem. (This follows since we have assumed - (t)):pk(t) (k)
Plempty IMP] ~ 0. But the Plempty IMP] correspords to P =0 g
the probability of being in state N(i.e., all N spaces
anenpw)inrigm%,arﬂﬂmsanhhgeaseinrdwiu

not seriously affect our results.) wehaveas—

sumad overutilization, we have (u (0} 1) <} Izttirq‘ At approach 0, we have

are justified in substituting this (or u(k)/g) fow:p.

'musmgetﬂ\efouawingforﬂlepmbabilitydmsityof 4 4
the lergth t of the time spent in the free state: %‘—t)-- -p(t)EoPk(t) (Am + u(k)) + kz-:oPk(t)lm 4
1 °(041£ /. k)
pit) =2 —(,'a- I (2tvou™™") (5) 4 4
t\/ u - -ap(t)kz.:ﬂt—*k(t) + lgr’k(t) @-u® 4 -’é u(o))

As the ratio um/o approaches 0, i.e., as the system

becames more overutilized, this density approaches that © {0) 4 x

of the exponantial distribution. To arrive at a more =-gp(t) +0-p"" + Es—z:)d’ (t) (11)
txactable model, we approximate the free period distri- Jo=0

bution by the exponential distribution having the same

mean value. The mean value of the busy period in the

original system is easy to cbtain, and is given by This can be simplified by noting that

A (1-0) . Therefore, as an approximation to the free :

periodinthem,wew;eanmmmtialdistdbutim 4
with mean value 1/(0-u(K)), i.e., with a parameter. Elmutber of blocked neighbors at time t] = ,&ld’k(t) (12)
19‘) =g - u(k) (6)
For the marginal case, o-u(o), elenentary queueing where E denotes expectation.
simthatwem!sttahe Define the indicator function
A (@ -% gor ¢ = (@ . 7 fnt) = |1 if node n is blocked at time t
0 otherwise

where N is the size of the storage capacity in the
e, . . Now let

Qn'mdelforﬁiebloddngmtsdmsabn-state pn(t) = P[node n is blocked at time t]

Maﬂvarocessor,in&nelmguageofs&ml
an alternating Poisson renewal process®, One way to
dascriheﬂxedmnicsofamﬁnrkofs\nhmdesisto
examine the probability that any given node is blocked Further, from By. (12), we have that
at sane time t, Oons’der a node with four neighbors

nuvbered 1 to 4: 4
2 k);okp"(t) = E(Y n(t)
neN

then E[fn(t)] = pn(t) (13)

= ) E(fn(t)) (14)
neN
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whe: 2 N is the set of neighbors for this node (of wh
there ure four). Fram Eqs. (13) and (14) we get

4
kgokl’k(t) = py(t) + Py(t) + py(t) + p,(t)
Finally, fram Bqs. (11) and (15) we have the result

‘ ét) = -op(t) +a - u{®

(0)
+ Ee—(py (£) + py(t) + py(t) + py(t))

ich

(15)

(16)

This relation can also be derived from epidemiology by
oconsidering nodal blocking as a deterministic epidemic °
without migration amd wish but two kinds of individuals,

infected and susceptible”.

Adjacent nodes have nearly equal probabilities of
being blocked. Consider the case when all of these

probabilities are exactly equal (as an approximation).

Then from Bq. (16)

957(;9- = —gp(t) +0 - um) + -g ump(t)

==(g -~ -;- u‘o)ip(t) +0=- u(o)

which has the solution

4 (0)
0] -4 o
p(t) = [p(o) - LK e +—-1!-m°
[ c-giuw’] c-gu

(17)

Now consider the alternating Poisson renewal process

shown in Figure 4. There are two states, called (B)

Figure 4. Netwurk Mode!

free (F). If the system is in the blocked state at

time t, it goes fre?}nu\enexti.nstantofdme At
(u{0)/5)At. In similar fashion, the

with probability

and

probability that it leaves free state and re-enters

the blocked state is (0 - u{0))At. Therefore, the
probability that it is in the blocked state at time
t+ At is

9%

(0)
PB(': + At) = ps(t) a- !!-At) +(1- %(t)) (o - H(O))At

t)
v e e - 4 4 (o - )

or

© = o @ - 2=u® g 0
= - ——le Sk
S e o- 4O o - gul0)
(18)

This is the same as By, (17) which was cbtained for the
probability that a node is blocked at time t! In a
large hamogensous system the fraction of blocked nodes
may be closely approximated by the probability that ary
one of them is blocked. Therefore, the fraction of
blocked nodes at time t in a large uniformly connected
(i.8., two--dimensional lattice) network 1s approximatoly
gual to the g%‘ ]ig that the two-state Markov process

igure s ocked state at time t.
Thus we may take this two-state Markov process as a model
for the network.

So far we have presented only aggregate results., To
obtain the probability that any given node in the network
is blocked at time t we must consider a system of equa-
tions of the form :

(0)
+ B (py(t) + B (6) + Py(t) + ()

for each node i in the network with neighbors j, k, %,
and m. These equations are cbwiously of the form

B(t) = aP(t) + C (19)

If there are n rdﬁinﬂaenet,ﬂ:en P(t) is the

n x 1 matrix whose 1 ' component is the probability that
i is blocked at time t. A is an n x n constant
trix and C isan nx 1 oonstant matrix. The solu-
is well known:

1

P(t) = (0) + A1 (eM - 1)c (20)

For a small net this solution poses no difficulty, but’
for a2 large one the required matrix camputations rapidly
get aut of hand. There are same special cases which are
solvable, however, and we obtain the solution for one of
these below.

Oonsider a network consisting of 1024 nodes arranged

in a 32 x 32 grid. For this system the matrix A is 1024
x 1024 and takes the following form:

D A
Hoon
A= ADA (21)

ADA
O "/

he




-ab -
bab O
where D = bab (22)
O"l;ab
| baj nxn
and l\--bIn (23)
(3]
where a = -0, b-Es—, and I is the
nxn identity matrix (25)

This observation holds for a square grid with any number
of nodes n on a side. (See the Appendix for “he com-
plete solution for P(t) for arbitrary n.) 'hiz case
of n = 1024 was simulated and is described in the follow-
ing section.

SIMULATION RESULTS

Simulation of a network of 1024 nodes employing the
Markovian inter-event time assunption substantiates the
approximations described in the theoretical results
sbova, Two different simulation programs have been run
on the UCIA XDS Sigma-7 camputer.* The first was for a
network arranged in a square grid 32 x 32. Each node is
connected to its four nearest neighbors (a lattice) ex-
cept in the case of nodes alang the border which have
only three nearest neighbars (or two nearest neighbors
in the case of the four corner nodes). When a node
changes state, new event times are chosen for it and for
all of its nearest neighbors based on the new muber of
blocked neighburs. The memoryless property of the expo-
nential distribution simplifies the calculations.,

The second program simulated a randamly connected
graph in which each node was given exactly four neigh-
bors.

Comparison of the two-state Markov process model and
the similation results for the lattice and the randaom

graph are in Figure 5 for one set of parameters
o and u( starting from a net that is camwpletely
blocked. Figure 6 shows the results when the network

begins with all of its nodes in the free state. In
Figure 7 results are cawpared for the model and the two-
dimensional integer lattice in which each node is as-

suned to have t neighbors. This was accomplished
by extending nearest neighbor definition to include
nodes vhich are diagonally adjacent. The results in

By. (18) are extended in the cbvious way. Figure 8 com—
pares simulation results on the lattice of degree four,
when a free node with k blocked neighbors is consider-
ered k-fourths blocked, to the predicted trajectory based
on a non-lincar "partial blocking" model. The agreement
with the simulations is generally good, and the model is
sufficiently general to treat a variety of cases.

CONCLUSIONS

Two new models that may have application to store-
and-forward conmmnication networks are presented in this
paper. The probabilistic model for nodal ing due
to finite storage space is shown in Figqure 2. The second
model, and the main result of this work, is that the
fraction of blocked nodes in a network of such nodes has

*During simulation the net activity was displayed on

a Digital Equipment Corporation 340 Precision Display CRT.
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Eg. (18)). Figures 5-8 verify that the network model
ocanpares well with results obtained fram the simulation
of a notwork of two-state Markovian nodes in which the
time spert in either state is a function only of the
state and the nurber of blocked ncighbors.’ Finally, the
mode]l is sufficiently general to treat a veriety of net-
work configurations and parameters.
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APPENDIX

We must first find the eigenvalues Y, of D which
are the solutions of |D - yI| = 0. lLet a stand for
a -y in Dy . we wish to find the zeros of the determi-
nant of D. Expanding by the elements of the top row,

we note the following recurrence relation for the deter~

‘m:l.mnt 4L, of thenxn matrix D:
by = atyy - PAn-2

with initial conditions "4; = a, 8 = 1, A_) = 0. Fol-

lowing Grenander and Szegol0we substitute a = 2b cos 6,
assure a solution of the fam 4, = p?, and solve the

resul atic in p. After satisfying the initial
mrﬂi&gwq‘:n&mult is simply

-

= b0 8in(n + 1) 8
bn = sin ©

which vanishes for 6 = vi/ntl
Therefare, the eigenvalues of D are

ve=1,2, .., n

- 44 v=1,2, .., n
a mesn.'.‘r 14y ’

which are all distinct. The eigenvectors are the solu-
tions cof

9

F. B. Hildebrand, Advanced Calculus for %dons, |
Englewood Cliffs, N.J.: Prentice-Hall, 1965, p. .

ab Lo X
babo M )\,2

bab Xal=YW |Xs3
| O be] [ | %)

It is easy to verify that the normalized solutions are

M- (-l)n-k sin kvr

. n+1 n+1l
/80 that the (i,3) element of &P
t n Y
=L e R Xy
-] n -1
an ity = £ ) xy %y
where
-k kvn
G in I

Ty=a-2cos =T and X, = /n“ﬁ
. -2

Similarly, it is easy to show that the transformation
"R"AR (where R* is the transpose of R) where
|

(33T o KTy oo Xl
%ol oo Xl oo Xpoly

wiﬂn)g,kugi\en

Q Lxln?.n oo XpIn oo xm:n.

abovazeducu A to the quasi-diagonal form
O

| ]

: O »

‘where

!

M, =D~ 2 cos 73 Iy

;sinalg,iseqtnltobwiﬂtad\angeofmediagmal
element, we have that the (k,1) element of the (i,3)
block of eA is

n n
4.1:1&,1 = él)g’ixvj ;lexp(a-Zb cos—m"% -2 mx%'fxpk )

;ad

a n n a
M gr,1 = ZgRike o (-2 coey -2 coe B iy

where




*

- P kve
X n+lsm“""I
it

In our system a = -0 and b-u(o)/s so0 the time
oonstants, i.e., the arguments in each of the exponen~
tials appearing in the solution for €At are of the
form

21:(0) v, vim
ot - t[wsn—h*mn—l—r]

which takes on its smallest absolute value for
Vi = vy=n. Thus the motion of the system is bounded

by
- (g - 4 40 n
ep - (o ’_:','“ cos FTr)t:

The nutber n is the square root of the number of nodes
in the square lattice. This result shows that as n + =
the system attains its steady state at a rate

ep - (o -%u‘o’)t

wvhich agrees with simulation results for n = 32,
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OPTIMAL FIXED MESSAGE BLOCK SiZE FOR COMPUTER COMMUNICATIONS*

WESLEY W, CIiIU }
Computer Scienee Department
University of California, Los Angeles, USA

In many computer communication systems, random length messages are partitioned into fixed
size blocks for case in data handling and memory management, When crror detection and retrans -
mission are used in the error control procedures, tliere is at lcast one acknowlcdgment delay asso-
ciated with cach transmitted message bloek. Thus, from an ncknowlcdgmcnt point of vicw, it is
desirable to scleet the larger block size so as to yield the fewer neknowledmments per message. On
the other hand, the larger message block has a higher error probability and so may result in more
retransmissiona and more acknowicdgment delays than the shorier message block size. Further,
due to the random length of messages, the last partitioned block usually cannot be entircly filled with
messages and is filled with dummy information. The large bloek size has a larger amount of such
wasted channel bandwidth; henee, it is desirable to partition the message into smaller block slze,
Thus therce {8 a trade-off among acknowledgment delay, message crror probability, andthe wasted
channcl bandwidth duc to the last unfilled partitioned block. A mathematical model is developed in
this paper to determine the optimal message bloek size that maximizes channel efficiency. Using
the modcl, the reclationships among acknowledgment time, ehannel tranasmission rate, channel crror
characteristics (random crror or burst error), average message length, and optimal block sizc are
obtained and presented {n graphs., The modecl and the graphs should be uscful as a guide in the
scleetion of the optimal fixed message block size for eomputer-communication systems,

1, INTROD.IJ’bTION ' Kirlin [4] have studied the optimal messagc biock

size for the error detegtion and rctransmt.,mon

To inerecase utilization of computer capa= system that maximizes transmission cffxctcncy.
bility and to share computer resourecs, rc- . In this paper, we consider an additional ympor-
motely located eomputers and/or terminals may tant parameter —the average message (ffic)
be connected with communieation links, Such ¢ length = in determining the optimal message
integrated computer communication systems block size, which significantly effcets the
allow many users to cconomieally share data ' selection of the optimal message block size,
bases and computer scftware systems, These _ For cconomic and reliabiiity rcasons {3, 6},
shared computing facilities can greatly increase ; the error detection and retransmission scheme
our computing eapaeity. In the design and plan= i 18 used by many data communication systems.
ning of such systems, eommunication problems . Using this error control techinique, encoding
between eomputers and terminals greatly in- . | and decoding circuits usually are requircd to
fluence system performance (e. g., inquiry- ! operatc on the message information to process
response delay) and overall system eosts, " redundant data. The receiving cnd checks the
llence, computer communications beeonie an . received message (together with the redundant
integral part of the overall system design con- data) and then generates an acknowlcdgment
siceration, For example, Asynchronous Time ¢ signal for the scnder to indicate wheticr the
Division Multiplexing [1) has been proposecd for ' message is eorrcctly received, If the message
dala comniunieation to inercasc channel utiliza- < is eorreetly reccived (positive acknowleds-
tion and reducc communication costs. In this ment), then the sender {a permitted to send a
paper we address the problem of determining new message. If the mess: (e {s ineorrcctiy
the optinal fixcd message bloek size to improve reeeived {negative ueknowicdgment), thenthe
wefficieney {n data communication systems. sender retransmits the same message, untid a
Kucera [2], Balkovic and Muench [3], and . positive acknowledgment of that message s

¥Tids rescurch was supported inpart by the Advanced Rescarch Projeets Agency of the Dcpartment
of Defensc Contract No, DATIC 15-69-C -0285, U.S. Atomie Energy Commission Contract No, AT
(11-1) Gen - 10, Projeet 14 and'U.S. Offico of Navai Research, Rcaearch Program Officc, Contract
No, N00014-69~-A=-0200-~4027, NR 048~-120, . T
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received by the sender,

Tiie message outputs from a computer arc
usuaily in stringa of characters or hursts. The
meseage length may be different from onc to
another and can best be ¢oseribed by a proba-
Lility diatribution, YFor case in data handling
and imemory manaficnicnt, the rancom messafe
length 18 usually partitioned into scveral fixed
aize blocks. Dut to the random length of tize
message, the last partitioned block usunlly eun=
not be cntircly filled by the message and is
fillcd with dummy information. From thc ack=-
nowledpment point of vicw, it {s desirable to
sclect the largest possible block size. Since
cach inessage block requires at least onc ack-
nowledgment signal, the fewer the number of
blocks nceded for a message, the less the chan=
ncl capacity rcquired for acknowledgments. On

the otuer hand, since the larger message block

has a highcr probability of crror and also has a
higher channel wastage duc to the last unfilled
partitioned block, it {8 desirable to seleet the
smallest possible block sizc. Thus there is a
tradeoff {n sclecting the optimal block size. The
basic problen: {s: supposc the average messago
length, the incssage length distribution, the
channel error characteristics, block overhead,
and the acknowledgment overhead arc known,
What is the optimal mcasage Llock sizc that mini-
mizcs the tiine wasted in acknowledgments,
retransmissions, and the last unfilled block?

A mathematical modcel is developed in this
paper to treat this problem, The model con-
siders two types of crror channcls: 1) Random
ervor chanael; that is, ¢ errors arc generated
{n a statistically independ2nt fashion and the
error ratc can be approximated as a Uncar
function of the block size, and 2) Burst error

. channel; that is, the errors arc gencrated in a
statistically dcpendent fashion such as the noise
produccd by radio static or switching transicents,
and the crror rate {s a nonlincar function of
block sizc, In general, crror characteristics
can be obtaincd only from actual mcasurements
{7}. For a given average channel errow rate,
the performance of the burat error channel is,
in gencral, better than that of the random
crror channel [8). Using our mathematical
model, the relationships among message
length (assuming the messages arc geometri-
cally distributed), transmission rate, acknowl-
cdpment overhead, block overhead, and optimal
block size arc obtained and portrayed in graphs,
These graphs and the model should be useful as
a gulde or tool in selecting optimal message
block size for planning computer-communica=
tion systcma.

2,  ANALYSIS

The message length, L, i{s a random
variable and can be deseribed by a probability
distribution Py (L) with average lensth £ char-
acters per message., When thie message s par=
titioned into a fixcd size block of B characters
per block, the expeeted number of blocks per
mcsesage is cqual to .
[}

N(D) = nzln' P, {in-)B <= ni3} 2=1,2,.. (1)

The structure of a fixed mcssage bleck
consists of an address, by, in the front of the
mcaosage block and a checking code, by, after
the message block, as shown in Figure 1,

b. B "z

© B ® FIXED SIZE MESSAGE BLOCK
b, » ADDRESS

. bye CHECK BITS
|
b = b, +b, * BLOCK OVERHEAD

‘Fig. 1. Data Structure of a Fixed Size Message

Block.

The overhead of such a block i{s then cqual to

b = by +by characters.® Thus, for a message
block size of B characters, the whole block
length is equal to B + b characters. Let E(B+D)
be the probability that a block of B +b charac-
tcrs (a message block of B characters with a
block overhecad b characters) transmitted over

a channel will have at 1cast onc crror. We
know that E{B +b) is dependent on both the crror
characteristics of the channcl and thc whole
block size B +b,  Clearly, a larger value of
B+b and/or a noiser transmission channel
yiclds a higher value of E(B+b). When error
detection and retransmission arc uscd for crror
control, there is a certain amount of acknow~-
Jedgment delay, A, assoclated with cach mes~
!sacc block. In a half duplex transmission mode,
‘the acknowledgment delay should also include the

. 'modem turn-around times if modems arc uscd

iin the channel. Thus, the expected acknow.-
'ledgment overhcad for a message block

%*We assume the unite of characters for consist-
iency and allow the reader to inscrt the number
iof bits per character to fit his implomentation.




transmitted over a channel is cqual to the first
acknowledyiment tbne plus the expected rctrans~
mission time and reacknowlediment time.
Assumming that the probability of crror of cach
message hlock during transmission is independ=
cnt of transmission or reuransmission, then
mathematically the expected acknowledgment
overhead for a measapc block of size B (or

whole black size B+b) on a channel with a trans=’

misseion rate Il character/sce s

A(B+b)=A+ Z E(B+b)]( (A+B“’ (2)
1=1

The expected wasted time duc to acknow-
ledgement and retransmission in transmitting a
message in fixed sized blocks, Wi(B), is cqual
to the expected nuinber of blocks (of size B+b)
per meesage multiplicd by the cxpected acknow-
ledgment overhcad of cach block. Thus,

W, (B) = N(B) - A(B+)

= N(D)- {A+Z(E(mb)l (A+B+b} (3)
{=1

Since 0 S B(B+b) =1, B> 0, and b> 0,

T 1 _E(B+b)
12:;,1( E(B +b)) TE(B+0) (4
Substituting (4) into (3} yiclds
oy e §a L E(BD) B+b
W,(B) £ N(B) {A T - (a3 } (s)

The cxpcctcd wasted {ime duc to block over=
hecad and the last unfilled paititioned block in
iransmitting a message in fixed sizcd blocks,
W,{B), is cqual to the difference between tho
time to transmit the blocked messago and the.
unblocked message.

Thus

N . Bib | Dbt (8)

W,(D) =
‘where b 18 the overhcad for the unblocked
message, . '

The total expected wasted time to transmit
a message In blocks, W(B), {s cqual to the sum
of (5) and (6). Thus

(B +bh)
1- E( B+b

B+b) Z+b!
+Bgb). Lo g

We wish to find the optimal block size B that
minimizes (7); that is,
g

W{B).= N(13) .{}\ (A p:L Bib
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*[1 , Btb

" W(E%) = n;n{N(n) . [A+ 112(-2(;;25) (A B+b)
*Eﬁ—b] - 2;"'} (®

Let us assumc that thc mcssa(c length s
gcom ctx‘ically distributed;* that s, Pr(r) =
» £21,2,3,..., with-average message~ T
length yi --p'1 and where p+q=1., The average
-number of blocks per message in this casec can
be computed irom (1) and {8 ¢qual to

{

B> Zn- L{(n-1)3<15n3} 1e1,2,...

n=1 e mem e
© nB o
; 0. O 2 n- Z qu -
! n=1 £=(n-1)B+1
; w
‘ - Z ne (1 -qB) (qB)n-l
n=]
=1 -q%7" (9

~ Substituting {9) into (7), wec have

' _B '1[ E(B +b)

’ " 2:.‘1]. AL 2'

; R PR R

l'ro minimize W(B), we take the derivative of
i

l

(A_‘_B-O-b

(10)

1(10) and set it cqual to zcro,

3W(B) _
. 2B ‘
:Ol‘

(=Bl L B+b
(q ”[AR* (+ 5k

]znquo

1wherc E'{B +b) is the first derivation of E(134b),
It can be shown that the sccond derivative
‘of W(B) (Eq. (10)) with rcspect to B that satis~
fies (11) {s positive. Ilence, solution of (11)
‘ylelds the minimum W(B). .Duc to the complex-
‘ity of (11), a closed form solution of B® cannot

E' (B +b)
1-E(13+b)

(1)

“be obtained, Thus, numecrical techniques are

.used to solve (11) for B,
Let us study the behavior of Equation (11)
and denote
B+by E! (H+b)
X(B)=(q"P-) [""" (1 AR ) T B+b)]

*Mcasurcments collected from several time
. sharing systeins revcaled that the message

. length output from thesc computers can be ap-

proximated by a geomectrical distribution {9).

S
Bt ]



and
" - _-t-k_,- « B
.Y(B) [1+BA“]_mq

thus
X(B) - ¥Y{B) = 0 (12)
Iirst, let us evaluate X(B) and Y(B) at
B=0,
X |} 00

b ] <qs
and Y(B)leor [1 * %A | [ 4n q| 05qs1
Thus, Y(0) = X(0). Further, if the slope of
X(B) {8 greater than the slope of Y(B) for all
B2 0, then X(B) intersccts Y(I3) at some B,

0 <D <o, as shown in FFigure 2. This {implies

xis0 Xi0}
vioi

Vo) e

(

“'
O ICHARACTERSH
iz, 2, SX0, 409
Irf~, 2., 3 = TdB
that \W(13) is i convex function of 3. Hence,
tie optimal block size B located by the numer-
teal technique attalns a global optimal,
Next, diffcrentiating X(B) and Y(B) with
cesneet to I3, we have

:.!.:::.(El. u ( B
dB

and ¥(0) > X%(0)

E(B+h)

1
-} f:ﬁi " TR(BAY

vy~ ..

+ (1 n+b> 11-E(R4b)E "(13+b)+[r.' (B+b)]
A

[1-L(B+b)]
E! (B+b)] -B,
* 3 [+ (AR+B) 7 L(Bw)] l."hgl)
SR B il oo
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}

! '-‘b .
'5‘ [ +(+ 3R 1-K(B+b)] .
+[1+B&b]°jnq-0- | (17)

* where E"(13 +b) {8 the sccond derivative of

(B +b).

Since the crror probabmty fnercases as
B increases, E'(B+Db)Z 0. Also since
0 < E(B+b) = 1, the sccond term of (13) is
greater than iY—“-}—’- . Further, 1f E"(D+b) = 0,
tiien the flrst tcx‘m of (13) is positive. Thus,
ax(n) , dv(n) for all B. Therefore,

an z i
E"(B+b) > 0 is asufficient condition to assure
the convexity of W(B). The physical meaning
of E'(B+b)Z 0 imples that E(B+b) is a convex
function of B +b. Comparing Equations (13) '
and (14), we know that cven if '(B +b) < 0 for
-d-;-}l(;ql z d;ng) might still be satisfied.
Thercfore, E"(B+b) = 0 {s not a necessary
condition for convexity of W(B).

In the following we shall analyze the
optimal message block size for two types of
crror chamnels: random error chamncl and

‘burst error_ channcl.

sonmic B,

Random Error Channel

TFor a random error channel, the prob-
ability that a block of B +b characters trang-
mitted over a channel will have at'least one

,error is

" E(B+b) = 1 -(1-1()3'”’ .
' 2
.l [1'- (B+b)K+ --————-‘B“’)‘nz"lb'”K

[

 where K equals average channel character
! error rate. X¥or most practical systcms,

" I (B+b) KK1 (e.g., (B+b)K=1000:10"4=0,1),

i Henee, (15) can be approximated as
| E(B+b) # (B +b)K (16)

' which is linearly proportional to the total block
| sinc B+b. Physically (16) implics that E(B+b)
. s approximately equal to the cxpeeted number
' of error characters in the block during trans-
"mission. The first and sccond derivatives of
E(B+b) equal to E}(B+b)=K and 13"(B+b) = 0,
To determine the opthimal measago block
size, we substitute E(13+L) = K(B+b) and
E (B +D) = K into (11). Wc have




Stnce E'Y(D+L) = 0, W{(DB) is a convex
function of B, 1ascd on the values of the prod-
uct of acknowledgment del ay and transmission

rate AR, K, and Z=(l-g)"! ,» the Newton~
Raphson' s lferative Mcthod {10} can bec used to
solve (17) for the opti:ial average bloek size BO.
The {teration is terminated when the Huiprove-
ment on W(I3) from each new B 15 less thun 104
scconds and the difference between the value of
new B and {ts previous B is less than 0. 1 char-
acters. The optimal messagce block sizc for
sclected ranges of AR, K, £ and b are por-
trayed in Figure 3,
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Random Error Channcls when Mcasago
Length is Geometrically Distributed,

Error Channel

In a burst error channel, the error tends

to cluster rather than be evenly distributed

. over the mesasages.

Fox' examplc, the noisc

produccd by radio stati¢ or switching transients

‘may cause such burst errors.

Two mcasured

burst error channcl characteristics [7] are

‘shown
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In order to express these curves mathcmat=

ically, n curve fitting technique [10] s uscd to
represcut X(3+4b) as a polynomiul, A good iit
with mean of the square crrors = 0.156x107%
for the GOO Lits/sce chauncl is

32, (B4b) » 0.14C - 0.160 {log, (B+)]

+ 0,045 [logw(n*b)}z (18)

1a the same mannes, a good fit with means ot

the oquare errors = 0,76x107° for the 1, 200

bite/sce chumnel is

E,(B+b) » =0, 14540, 185(10g, ,(D+b)} 0. 108( 1o, o(x;mz)]2
L] 4

+0.121x10 " (1og, (B} + 0, 240x10 7 log, ,(B+b)]4

0. 146x10 “{log, (B+b° +0.268x10 "10g, o(B+b)]®
-0, 'z'::sxxo"‘um;1 O(B+b)17 - 0. 162x10 Y107, o(mb))“
m.2:;0::10'5(logm(mb)}9 .

for 200 § B+ £ 2x10° chars  (10)

The (B+b)? 8 in (18) and (19) arc in charac~
ters. The original measurcd resuits are in
bits. Here, for consistency, we represcnted
them in characters with a scale of one charac~
ter cqualing ten bits.

¥From (10), we know that E(B+b)> 0, for
all B+b., Thus, the W(B) of E;(B+b) is a convex
function of B, From (190}, L(B+b) < 0 for somc
B. llence, we need to compute and comparc its
S%(lﬁ' and 9%_(1,;}_)_ . We find tha"f for the range of
B of interest, f.c., 0< B S 10° characters,

. i
d—)i%‘})- 2 9‘5)(1-&)_ . Thercfore, W(B) for E2(13+b)
is also a convex function of B.

In the same manner as in the randon error
case, wo substitute (18) into (17) and then (19)
into (17) and use numerical techriques to solve
for B° jor cach of the transmission rates. The
relationship aunong the optimal bloek size, *
avesage message iength, b, and AR's {or
E(3+D) and E,(B4b) are portrayed in ¥ig. 5.

dx(n) . dY(M)
dB = dB
some rejfions of B, numerical results might
lead to a loecal optimal, In this case, muner-
ical search should be performed in these re=-
dons to locate the loecal optimalis-of cach
reglon. ‘The global optimal block size B can
then be sclected from thesc local optimals.

When arc not satisficd for

*Note l'.‘l(u—ﬂﬁ) and E »(Ii4b) are represented in
characters with a scale of one character cquals
ten bits, Should the measage not ajrec with the
scale as that of E(B+b) and E5(134b), the mes=
sage must be converted into the same scale
(onc character cquals ten bits) before using
~'ig. 5 to determine the optimal block size,
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. 3. DISCUSSION OJ" RIESULTS

The optimal block size B° for a random .
crror channel with selected average message
lenpth, block overhead, and AR' s is prescented
in ¥{g. 3. Ior a spceific randoin crror chan-
ncl, the optinal block size Inercascs with the
AR. This agirces with our intuition, L.e., IfA
and/or R s incveasing, (note, A (s indcpendent
of 1), then we should partition the message
into larger blocks so as to reduce the umber
of blocks per message. -

For a given AR und average message
lengih, thic optimal block sizc is larger for a
smaller error rate channcl than for a larger
error rate channcl.

For a burst crror channcl, wc approxi-
mated {ts crror characteristics by a poly-
nomial, In the same manner as {n the random
error channcl ease, we substituted 1,(13+b) and
Eq(134b), respectively, into (17) and numcrjca}ly
solved for the optimal message block size. The

B9 g for scleeted average message lengths and--

sclected AR! s of E1(B+b) and 125(B+b) are pre-
sented in Fig, 5. Yor small AR values, the
behavior of B° s similar to that'of a low error
ratc random error channel. For large AR
values, the behavior of B {5 similar to that of
a high error ratc random error channcl. This
‘phenomena {s due malinly to the fact that the
burst crror characteristics havo a nonlincar
cffect with block size, )

The W(B) for a random elror channcl is
always a convex function, The W(B)' s for a
burat crror chanpel with error characteristics

2:(B+b) and Ep(B+b) arc also convex functions.
. In general, however, the W(B) for a burst error
channel {s not nccessarily a convex function. A
few typical W(B)*s are shown in Fig. 6.
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We noted that the W(B)'s arc rather {nscnsitive
around B9, Iora glven /' AR, and channel

error characteristic, the W(I3) incrcascs as the
block overhead b inercascs as shown in ¥ig. 7.
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~.Fig. 7. Effect of W(B) with Blotk Overhead, b,

. _From Figurcs 3c and 5¢, we noted that SRR
B9%b=0) increascs as b increcases, and the

amount of difference between B%(b=0) and

B(L#0) deercases as AR increases. From

Fig. 6, we notcd that the W(B)' s are rather .
insensitive around B®. Thercfore, fo a"systcm

that has a small block overhcad b, and a large

AR, then the optimal bldck size with block over-

.hcad {8 approxlmatelg equal to that without block
overhead, that is, B9%b=0) &= BO(b = 0),

4. EXAMPLE

Conslder the planning of a computer network
that consists of many computers and/or

terminals, Thesc computers are remotcly
located and communicate from cach other via
-communication channecls. A wideband channcl
that can transmit 5, 000 characters per sccond

i8 used between cach pair of computers, The
.channel has burst crror channel characteristics
I-aimnar to I5(B+b) as shown in Fig. 4. For rc-
.Uabilily in information transfer, crror detcetion
.and retransinissfon arc employed in the system,
:Further, the message is partitioned into fixed

' 8ize blocks for case in data handling and memory
management. The block overhead, b, s approx-
imately cqual to ten characters. The acknow-
ledganent thine for each block is about 40 m{1li~-
scconds. The message length of the computer
‘output can be approxdmated as aeometrically
distributed. We “ould like to consider the
optimal block sizcs for: 1) average message
‘length cqual to 500 characters, and 2) average
;message length equal to 1,000 characters.
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‘I'ne acknowlediment -transmission rate (9] i. Tuciis and P, E. Juckson, Estimiics of

product 16 cqual to AR=40x10"3x5x10=200 Distributions of Random Virfables for
characters, Solving Equution (11) numerically, Certain Computer Communications Trasile
we find the optimal biock size for 2 = 500 char=~ Modcel, CACM, Vol. 13, Ao. 12 (Dec. 1970)
acters i3 376 characters, und fron Fip. o¢, pp 13237,

the optimal block size for 2 = 1,000 characters [10} K. W. iiammiing, Nun.eriecal Mcethods tor

is 527 characters. Compuring with ticir Scientista und Bngincers, McGraw-1ill
optimal block sizes jor b = 0, the diffcrences Boox Company, (1962),

between the BOb#0) and 139 b=0) arc within ten ‘

charactcers.

-
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ON NON-BLOCKING SWITCHING NETWORKS *

DAVID G. CANTOR

Abstract

A switching network wy be informally described
as a collection of single-pole, single-throw switches

arranged so as to connect a gset of terminals calle

inputs.to another set of terminals called outputs.
It is non-blocking if, given any set of connectiogs
from some of the inputs to some of the outputs,
idle input terminal x and idle output terminal Jrr:
then it is possible to connmect x to y without .
disturbing any of the existing connections. Denote’
by o(a,b) the minimal number of switches necessary
to connect & inputs to b outputs using a non-
blocking network. We are interested in studying the
growth of o(a,a) as a - =, Results of C. Clos
2Vlog a-log 2

show that of(a,a) < C ae . We show

that o(a,a) < 8&(1032 a)e.

“This work was support in part by the Advanced Research Projects Agency,
Department of Defense Contract DAHC-15-69-C-0285, The author would also
like to thank the National Science Fourdation GP #13164 and the Sloan
Foundation for support while writing this paper.
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ON NON-BLOCKING SWITCHING NETWORKS

DAVID G. CANTOR
1. Introduction.

\ A Network N consists of a graph G; two sets of vertices
- of G, denoted A and B and called, respectively, the (sets of)

 inputs and outputs; and a set P of paths of G. Each path in P

connects an input to an output and meets no other inputs or outputs.
We write N = (G,A,B,P). A state of N is a subset S of P such
that no two paths in G have a common vertex. A state 8 defines

a bijection f, from a subset of A to a subset of B as follows:

S
Suppose p € 8 and p connects x € A to y e B; put fs(x) =Y,
and repeat this for each path in S. We shall say that a path p

of G is admissible if p e P, If x 1is a vertex of G we shall

say that x is pusy (in the state S) if x 1lies on a path p ¢ S;
otherwise we shall say that x is idle (in the state 8). If x

is an input of G and y is an output of G, we shall say that x
has access to y (in the state S) if there exists a path p e P

connecting x to y and such that S U {p} is a state.

A network N = (G,A,B,P) may be interpreted as a switching de-
vice; under this interpretatiorn, the elements of A are considered
as input terminals, the elements of B are considered as output termi-

nals, and the edges of G are considered as single-pole, single-throw
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switches which are normally open. Then a path p, which connects

Xx €A to y ¢ B may be thought of as a sequence of switches which,
when closed, connect x to y. The state S yields a collection of
switches (all edges on any path in S) which, when closed, connect

inputs to outputs as described by the function fs.

The network N = (G,A,B,P) is said to be non-blocking if

given any state S of N and idle vertices x ¢ A, y ¢ B, then
x has access to y in the state S. In terms of the switching
network interpretation mentioned above, this means that if x and
y are idle input and output terminals, respectively, then it is
possible to establish a connection between them without disturbing

the existing connections.

From now on, all the networks we study will have disjoint in-

puts and outputs (i.e. ANB=§ ).

Given positive integers a and b we are interested in find-
ing those non-blocking networks N = (G,A,B,P) with [A| =a, |B] = b
for which the number of edges of G is minimal. We shall denote this
number by o0{a,b). In terms of switching networks, this amount to
finding non-blockirg networks using a minimal number of switches. An
obvious non-blocking network with a inputs and b outputs is the
network whose graph is the complete bipartite graph on vertex sets A

and B with |A| =a and |B| = b. In this graph the set of vertices
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is A UB and there is an edge connecting each vertex in A to each
vertex in B. The set P consists of all paths consisting of ex-
actly one edge. Thus P has ab elements. In the switching net-
work interpretation, this amounts to an a by b crossbar switch.
When the names of the sets A and B are unimportant, we shall de-
note this network by Cab' The network Ca.b shows that ofa,b) <

ab.

It was Clos [2] who showed that o(N,N) < N° for all large N.

His methods, which will be described later, show that ofN,N) <
2(10g N)+(1og 2)

C Ne . We will show that o(N,N) < 8N(1log, 2.
We do not attempt to obtain the smallest possible constant multi-
plier, for it is not clear that the exponent 2 can not be reduced.
In the oppc.asite direction, an elementary argument shows that

o(N,N) >C N log, N, and nothing stronger is known.
2

The author would like to acknowledge many stimulating dis-

cussions with Professors B. Gordon and C. B. Tompkins.

2, -Constructions.

We shall say that networks N = (G,A,B,P) and N' =(G',A',B',P')
are isomorphic (or equivalent) if there exists a graph isomorphism
M of G onto G' such that W(A) = A', u(B) = B', and W(P) = P,
It is clear that the property of being non-blocking is preserved under

isomorphism.
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If N=(G,A,B,P) is a network, we define its transpose N' to

be the network N' = (G,B,A,P); clearly N" = N.

If G is a graph and C is a set, we define the graph G X C
to be the graph whose vertices are the ordered pairs (x,c) with x
a vertex of G and c € C; ((xi,cl),(xé,ce)) is an edge of G X C if
¢, =c, and (xl,xé) is an edge of G. If p is a path in G whose
vertices, in order, are xo,xl,...,xn then by p X ¢ we mean the path in

G X C whose vertices are (xb,c),(xl,c),...,(xn,c). The product C X G

is defined similarly.

Now suppose L, = (Gi,Ai,Bi,Pi) (1 =1 or 2) are networks;
we are going to define the network product Ll X L2. We shall denote
this product by N = (H,C,D,Q). Put C = A, XA, and D =B, XB,.

The graph H 1is obtained from the two graphs Gl X A2 and Bl X G2 by

identifying the vertices in Bl X A which appear in both graphs. All

o9
admissable paths q € @ of N are obtained as follows: Let pi € Pi
be an admissible path connecting EA A to ¥; € By (L=10r 2).
Then p, X x, ends in the vertex (yi,xz) which is the first vertex
of ¥, X Pp- The path q = (pl,pz) is defined to be the path obtained
from the paths P X X, and ¥, X P, by concatenating them and
identifying the common vertex (yi,xz). Note that this maps Pi X P2

.onto Q.

In the switching network interpretation this construction amounts
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to taking |A

> copies of L2, and con-

| coptes of L ana |B|

necting the outputs of each of the copies of Ll to the inputs of

all of the copies of L, (see Diagram 1).

Let ai,b s¢,d denote, respectively, the cardinalities of

i

A,,B,,C,D, and let gi,h denote, respectively the number of edges

s i

of G, and H. The following relationship between two by two ma-

i
trices is easily verified

w ()G

If Ll is isomorphic to Ml and L2 is isomorphic to M2

it is easy to verify that L, X L2 is isomorphic to Ml X M2.

1
Furthermore (Ll X L2) ' = Lé X Li. Finally, we have associativity:
(Ll X L2) X 1.5 =L X (L2 X 1.3); we will usually write simply

Ll X L2 X 1.3 We will abbreviate the k-fold product

LXLX XL by L

We also define a triple product of the three networks
L, = (6,A;,B,,P) (1=1,2,3) when [B)] = ], Let T vee

‘bi;jection from A3 onto B the triple product of Ll’Lz’L5 de-

1’
rends upon the choice of T and will be denoted by [L ,L2,L3] -
(In many cases I.3 will be L:'I_ and in such cases we will choose T

to be the identity map. In any case those properties of the triple
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The lines do not represent edges; they connect
output vercices of Ll to the input vertices

of L, with which they are identified.

Figure 1. Ll X L2
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product which we will use will be independent of the choice of T and
we will frequently write [Ll’Le’L)] instead of [Ll’La’I'}]'r‘) Sup-

pose then that N = (H,C,D,Q) is [Ll,Lz,L}]T.

We put C=A XAQ and D=B, X B,; H is defined as the

1 3
graph obtained from the three graphs Gl X A2, Bl X Ga, and
(.‘v3 X B2, by identifying Bl X A2 in Gl X A2 with Bl X A2 in
B, X G,, and by identifying le X B, in G3 X B, with T(Aj) X B, =

Bl X 32 in Bl X Ga. The admissible paths q € @ are obtained in
the following way: Let Py be an admissible path of Li connecting
x, €A to y €B, (1 =1,2,3) and suppose 'r(xj) = y,- Then

P, X X, ends at (yl,xe); ¥, X P, begins at (yl,xa) and ends at
(Yl:YQ); and Ps X ¥, begins at (?c},ya) = (yl,ya). The path q

is obtained by concatenating Py X Xy ¥p X Po» jp3 X Yo and identi-

fying the vertices common to two segments of q.

Note that [I‘l’I‘e’L}] is, in general, different from

L, x L, XL (see Diagram 2).

3

The following is easily verified; we omit the proof.

networks. Suppose Tl is a bijection of A5 onto Bl' Then

-

[le [La’L}’L,*]Tl,leTa = [Ll X L2’L3’Lh X L5]T ’
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The lines do not represent edges; instead they
connect vertices which are to be identified.

Figure 2. (L), Ly, Ls]
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where T

3
T(&h:as) = (72(‘5): Tl(a'h))'

is the bijection from Ah X A.5 to B1 X B2 given by

3. The Clos method and some variations.

The basic method, due to Clos [2] and quoted by Benes [1] may be

stated as the

THEOREM (Clos). Suppose L = (G,A,B,P) is non-blocking and

s >2r -1. Then N = [Crs,L,Csr] is non-blocking.

This is a special case of the following more general

THEOREM 3.1. Suppose L, = (Gi,Ai,
non-blocking, that |Bll > |A1| + |133| -1, end that |B | = |A5|.

Then N_= []‘.-1,1;2,1.3]T is non-blocking for eny bijection T of A,

Bi,Pi) (:l = 11213) P-E

onto Bl'

Proof. Suppose N = (H,C,D,Q) is in state S, and that
x € C,y ¢ D are idle. We must show there exists a path 'q € Q@ con-
necting x to y and having no common vertices with any path in S.
Suppose x = (ul,ue) €Ay XA, end y = (v3,v2) € B3 X By, There
are lAll verti.ces of the form (u,ue) €A XA, and at most
IAll - 1 of them are busy. Hence at most lAll -1 of the IBll

vertices of the form (v, ue) € B, X A2 are busy and hence at least

1
lBll - IA_LI + 1 of them are idle. Denote these vertices by

119



10

(yil,uz),(yiz,uz),...,(yir,uz), so that r > lBll - lAll + 1, Simi-
larly, there are vertices (zi ,vl),(zi ,v2),...,(zis,vs) in
le X 32 which are idle, and s > |A3| - |33| + 1. The r +s8 ver-
tices y. ,¥, seeerY. » Wz, ),7(2z, ),...,®z, ) all lie in

il i2 ir il 12 :'_s B.'I.
and )

r+s 2 [By] - a1+ (B - [B] +12
2 [By] + 1+ (I - [a)] - [B,] +12)
2 Bl +1 .

So two of them must be the same. Now the y, @are all distinct and

J
so are the 1 2, ). Thus there must be a y; equaltoa 'r(zi ),
J k

say y, = Tz, ). Since L. 4is non-blocking there is a path p
i, 3 1 1
connecting u, to y and such that p, X L has no common ver-
1 :I.1 1
tices with any vertex in S. Similarly there is a path p, from
u, to v, in P, such that y, X p, has no common vertices with
2 2 2 :I.l 2

any path in S, and there is a path Py from =z j to v,3 in P3
1

such that Py X v, has no vertex in common with any path in S,
Let q be the concatenation of Py X Uy yil b Py and p3 X A2
with the appropriate vertices identified. Then q comnects x to

y and S U {q}] is a state of N.
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REMARK 3.2. Suppose a, = |Ai|, b, = lBil and g, is the
number of edges of G, (i =1,2,3). It is easy to verify using (1)

that N = [I'l’I'z’L3] has a inputs, b, b, outputs and that its

122 2°3

graph has a8, + b132 + b233 edges.,

Clos [2] suggests using metworks which may be described as

(,(y,(L,...,[L,ML'],L'],L],...,L']

= = [A]
where L cn,2n-1 and M cn,n' By Theorem 2.1, this is the same
as [Lt,M,(L')t], vhere L' =LXLXLX «+» X L (t times). He
t+l

shows that this non-blocking network, which has n inputs and

outputs, has

no(on - 1

n-1

[(5n - 3)(2n - 1)1 - 2n%)

edges. This follows immediately from the above remark. It is easy

to verify that a non-blocking network with N inputs and outputs,

o ~n \
constructed by this method, will require at least C, e’ Viog N*log 2

edges, where C_. > 0 is a constant.

0
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Suppose that Lab denotes a network with a inputs, b out-
puts, and whose graph contains a minimal number of edges, namely
o(a,b). Using two copies of L,, shows that o(a,2a) < 20(a,a). By
Theorem 3.1, [La, 2&’La,a’L2a.,a] is non-blocking and by Remark 3.2,
it has < ao(a,2a) + 2ao(a,a) + ao(2a,a) < 6acia,a) edges. Thus

2 2
(2) o(a“,a") < 6ac{a,a) .
log, 6
Iteration of (2) shows that o(N,N) < C N(log N) . This result can
be improved by considering [La, 2a.’La, 2b’L2a,a]; this network has
sb inputs, 2ab outputs and its graph has 3bo(a,2a) + 2ac(b,2b)

edges. This shows that

(3) o{ab,2ab) < 3bo(a,2a) + 2aoc(b,2b) .
log, 5
Putting a = b and iterating (3) shows that o(a,2a) < C a( log, a)

and since o{a,a) < o(a,2a) we find that

log, 5
(L) o(NN < CN(logeN) .

The exponert log, 5 can be decreased by choosing a and b differently.

.let @ >1 and B > 2 be the real solutions of the simltaneous equa-

tions
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p-1
(4) {(a_ifd =Zk }

Numerical computation shows that a = 2,37638 and B ™ 2.26922.
Multiplying the second equaticn of (4) by @ - 1 and substituting
from the first yields 2(a - 1)B -df - 3 or equivalently

(5) : 3(1/0)B +2(1 - 1/a)B = 1 .

We now show that if u(x) = (log x)F, then u(x) satisfies the

functional equation
(6) w(z) = 3u(x) + 2u(y)
where x = zl/ ¢ and y = z/x. Indeed,

3((10g 2)/0)® + 2(1.; 2)P (1 - /)P

3k(x) + 2u(y)

(10g z)P

= u(z)
using (5).

Now o(x,2x)/x satisfies a functional inequality similar to
(6) where x and y mst be integers. It follows that for each

€ >0, there exists Ce > 0 such that
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o(N,2§) < ¢, Nilog MP* .

For comparison, 1032 5 = 2.32193.

4. The exponent is < 2.

Suppose L = (G,A,B,P) is a network (not necessarily non-
blocking). We shall say that L is of type T(m,n) if, given any
state 8 of L and m idle inputs XypXpy e ooy Xy of L, ¢then

each has access, in the state S, to at least n outputs of L.

LEMMA 4,1, Suppose L = (G,A,B,P) is of type T(m,m + n - 1)

for 1<m<k, that M is a non-blocking network with c inputs

and 4 outputs, and that nd >a(c - 1). Then L X M is of type

T(mm + n* -1) for 1<m<k where n'=nd - a(c - 1) and a

is the number of inputs of L.

Proof. Take k < m idle inputs SYLPYERRPL N Suppose, for

example, that 21925y eeesZy, ATe of the form

(xl’yl)’(xa’yl)’“"(xk”yl) ’

and 214172400 0 2By BTE Of the form (xh,yi) where i >2; here

the x.j are inputs of 1L and the yJ are inputs of M. By hypothesis,
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(xl,yl) has access to at least n + k' - 1 vertices of the form

(uJ,yJ) where the u, are outputs of L. Since M is non-blocking,

J

these have access to all idle vertices of the form (uj,vk) where

v, 1is an output of M. There are (n + k' - 1)d such vertices. How-

k
ever, as many as (c - 1)a - (k - k') of these could be busy; this

would be the case if all inputs of the form (xh,yi) , Where i > 2,

other than were busy. Thus zy has access to

Zprg1r Drar c 000 %y

at least

(n+k*-1)d -(c -1)a+(k -~ k*) > nd-(c-1a+k-1

n + k-1

output  terminals of L X M,

The following theorem provides the motivation for defining

the notion T(m,n).

THEOREM 4.2, Suppose M is a non-blocking network and L is

a network with a inputs, b outputs, and of type T(1,n). If
en >b, then [L,M,L'] is non-blocking.

The proof is similar to that of Theorem 3.1 and will be

omitted.

- J
Now choose an integer k > 1 and put LJ = Cg,p_k o Cg
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if j <k, then I'J has 2‘! inputs, k-2‘1 outputs, and inductively

by Lemma 4.1, I-.1 is of type '1‘(1,2'1-1(2k - J)) and

(2,29 X2k - §) +1). Thus L, is of type 2,k +1). Let M
be obtained from Lk by omitting one input. Then "k has Ek -1

k-1

k
inputs k*2° outputs, is of type T(1,k-2 + 1), and its graph

has no more edges than the graph of I'k The associated matrix of

Ik is
(o )2 200

Thus Mk has 21‘-2k2 edges and if N is any non-blocking network,

then by Theorem 4.2, so is [Mk’N’M'l'(]‘ Thus putting, for example,

k+1

N=C we obtain a non-blocking metwork with (2~ — - 2) in-

puts and outputs whose graph has < 2k+l{ hk2 + 2k) edges. It is im-
mediate that ofN,N) <8N(log, N)° for all N > 2. It is not hard
to see that the constant 8 could be considerably decreased, but

the majJor open question is the value of the exponent.
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T St 7Y



REFERENCES

v
1. V. E, Benes, Mathematical Theory of Connecting Networks and

Telephone Traffic, New York, Academic Press, 1965.

2. C. Clos, A Study of Non-Blocking Switchinz Networks, Pell System

Tech. J. 32 (1953), pp. 406-42k,

UNIVERSITY OF CALIFORNIA, LOS ANGELES
LOS ANGELFS, CALIFORNIA 90024

127



APPENDIX H

DELAY IN OOMMINICATION AND COMPUTER NETWORKS

by L. Kleinrock

128




.7 DELAY IN QC::IXIICATION AND CD“?UI‘ER NET'ORKS*

Leonard Klemmck

Computer Science Departrent
University of California, los Angeles, California 90024

I. INTRODUCTION

~ Delay in commicaticn and computer networks has
recontly kecome @ sidject of ocnsiderable interest.
In this p:aper we address owrselvas to the topics of
analysis and optimization of such nets. Those we
consider are of the store-and-fcrward type more
cxronly icwn as message-switching networks.

T-=e prcblem ccafronting the network cdesigner is
to create a system vihich provides suitzble network
perforrance at wn acoceptakle systen cost. Since, in
message-swvitched networks the messages experience
guevzing delays as they pass frcm noée to node, the
performance measure is usually taxen to be the speed
at which nessages can be cdelivered. The optimiza-
tion problem is to achieve minirmal average éelay at
a fixad network cost by arpropriately choosing the
retvor: topology, the channel capacity assicnment,
and the messac2 routing procedure. The purpose of
this paper is to review same of the methods for
handling various aspects of this prchlem.

II. ANALYTICAL TOOLS

Tie appropriate tools are those vhich have devel-
oped from queuweing- theory.

I1.1. Single Server Systews. Mich of queuveing
thecry oconsiders systems in waich messages (custo-
mers) “place demands for transmic-icn woon a single

comanication chanrel (the single server). When the -

average demand for service is less than the capacity
of the channel to handle these Se=mands, the systenm
is said to be stable.
gle server queu=ing systems is fairly voluminous as
for example examplified by the excellent work by
Qohen [1]. Single server systems are characterized
by A(t), the distribution-of intsrarrival times and
B(x), the distribution of service times, In ths
case when A(t) is exponential (i.e. Poisson arriv-
als), then ‘the literature contains fairly camplete
results. However, when both A(t) and B(x) are arbi-
trary, then the situation becores ruch move corplex
and only weak results are available.

Recently attention has been directed to develop-
ing approximate solution methods, These methods in-
clude: placing bounds on the behavior of the sys-
tem; studying the system behavior wnder light and
heavy traffic conditions; and by forming diffusion
approximations to the physical cuaveing systems.
This last approach appears most premising and in-
wolves replacing a discrete randam process with a
continwus random walk typically with a reflecting
barrier at the oricin to prevent queus sizes and
waiting tires from going negative (see Gaver [2]).
Numarical results vhich have been obtained using
the diffusicn asprcximation have bocn startling in
terms of their accuracy vhen corpared to the origi-
nal queueing problan.

II.2. Multible I'alos and Netvorks. The case of

CIntérest to tds pucr Is tial of nudtipie nodes in

*is work was supported by the Advancod Research
Projects Agency, Dopt. of Defense #DAICES-69-C-0285,
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a network envircnment. The queueing prublers ca-
ocountered in netiorks are far more ¢ifficult than
single server prcblems. The difficulty arises dca
to new phencmena which occur in networks, the mest
irmortant of which is that traffic entering a n>’=
in the network is dependent upon traffic elsewhzro
in the network and on other rncdes through vhich: this
traffic has passed. This difficulty manifests it-
self in that A(t) for a network noda2 is no loncer
exponential, A second difficulty is the ph»nor--\*
of blocking which occurs when the finite stiorace ca-
pacity of a node becames filled and the further re-
. ception of messages is temporarily: prohibited. This
then places a burdan on neighborirg nodes and they
too tend to get blocked cauvsing the effect to Frca-
gate in the network. This effect is probably cne of
the least wnderstood queveing effects in the study
of rets and has significant impact wpon performance.

The prcblem in which customers are permitted to
ove amnong a oollection of queueing staticns in some
random fashion was studied by Jackson [3] His ra-
jor -result was to show, when the system is stable,
that each node in the system could indesed be a.z-
lyzed as a single queueing facility (uncer Markovian
assumptions). This represents perhaps one of th2
first successful attenpts at deccesirg a retworx
rroblem into a series of sinpler sirgle node proolews.
Another fundamental result which '"*uts decarposi-
tion of cueueirg networks is due <o Rurke [4]; he
showed that if A(t) and B(x) are e¢vnential, then

the departure times’ are alsp ecpc-anually distri-
buted. Thus, we preserve the Poisson nature of the
traffic flow between network noces.

The results referred to in the crevious paragrach
d not carry over trivially into ~=ssaje oriented
communication or computer nets since messages main-
tain their lengths as they pass through the net. The
£irst comprehensive treatment of camunicaticn rats
was carried out by Kleinrock (5). Fortunately, it
oould be shown for a wide variety of commnicacicn
nets that it was possible to introduce an assuo>-
tion which once again permitted a decompositicn of
the network into a collection of single ncdes.

Using the simple structure of the linzar equa-
ticns of motion governing Markovizn queues, Wallace
[6] has dsvelcped a procedure for solving the system
of equations nuterically.

I1I. OPTIMIZATION TOOLS

Perhaps the first camwsnicaticns network optimiza-
tion problem was posed and solved by Kleinrock (5]
in which he assumed that the network tepology and
the channel traffic were known quantities. Aleo, he
assuncd that the traffic was rarrsovian (roissta Gi=
rivals and exponcntial message lengths) and justi-
fied cortain dacomposition assu-ztions. - For eazh
Eharmel ths oot ieal asstgzzond of cana 1.., C; was
found which mininuzed the awvrasje netvwori ealiv T o
messages, at a fixed total systen cost Do We dafinas
T; as the average queucing plus trancnicsion tise on




»

the ith -.hannel Aj as the average message traific
on the ith chanrel; y as the average netvork traf-
fic throughout; and @; as the cost factor on the i
channel. This procblom takes the follewing forms

Problem A: Choose the set of channel capacities,
Ci, to minimize T at fixed cost D where

TeEO/MTy (D D= Eac @)

s%l]uf_ion to this problem assigns a capacity to
channel in an amount equal to the average

traffic carried plus an excess capacity prcportional
to the square root of that traffic. It may be cb-
served that a related capacity assicrrant (namely,
that which gives capacity directly in proportion
to traffic carried) provides an aver:zce ressage de-
lay not significantly worse than the optimm.

These, and other related results, were published
as Kleinrock's rth.D. thesis (MIT) in 1962 (this work
later azpeared as [S)). Little was published in
this field from then until 1969 (7). Vhatever the
reason for this inactivity, it is clear that the re-
cent interest is due to the developrent of computer
networks. In 1967 Roberts (8] proposed the idea of

" an experimental coputer network which later devel-

oped inz> the Advanced Research Pro’ects Agency
(ARPA) camputer network (recently reported upen in
the 1970 SJCC Procredings).

In a forthooming peper by Meister et al. [9], it .
is cbserved that in minimizimj T in Prcblem A above,
certain of the channels produce rather large and un-
¢rsirable messace celays T;. -As a result, leister
et al. pose the following pmblem, whose solution
1s closely related to that of Problem A:

Prblem B: Sae & Problem A exaept T s glven by
T=(F W1k 1k (3)

By raising T; to the kthpoccerﬂieyfmd that for
k>1, one t'oroes a reduction in tre variation

awng the T;j. For k + » the minirizaticn yields a
constant ue for T;. When k = 0, the assxgm.ent
reduces to the pmportxonal channel capacity assign-
ment. The amazing observation is that T increases
very slowly as k grows from wnity. Aoreover,:' they
show that the variance of message delay is mini-
mized when k is .chosen equal to 2.

In Ref. (7] Kleinrock introduced sare first at-
terpts at modelling conputer nets and was able to
show that simple mocels ware extrerely useful in
predicting the behavior of the nussage delay in the
APPA computer net. In a subsoquent paper [10] he
introduced the follewing variation to Problem A
since the ocost function as given in Eq. (2) was
found not to represent tariffs for high speed tele-
phone data channels:

Problen C: Same as Problem A except D is given by-
D= g;¢° 4)

\here 0sasl. The solution to Problem C cannot
to given incloend Evim.  Kaorinless, in sgolying
a mrorical solutien of this preblem to the ARPA net
it was found that th2 mossajq dolay varied insignifi-
cantly with a for .3 € a £ 1." This indicates that
the closed fonn solution to Problen A may serve as
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an approxmaucn to the more difficult chblm [

IV. A!:"ITIC"AL Q.SICEPATICNS

Minimizing cost at -ixcd average message delay
by apprepriately choosing channel caracity is the
dual for prchlers A, B, and C. This was studied in
TIOT and corsidered recancly by Ui itney [11]. Choice
of ne*work tcrolocy was ccnsidered in Kleingock's
original work. Fecent_y Frack et al. [12]) oconsid-
ered this prcblen for the ARPA net and caveloped
suboptimal search procedures. Trey also addressed
the problem of chocsing an cptimal chanrel assign-
ment when capacities must be chosen from a finite
set; '.-.‘hit“.ey (11) e=d Doll {13] consicared this
problem for a fived tree topology. Frank et al. {14)
devised an cctiral trocedae for selecting discrete
channel cagacities for centralized carguter networks.

Message routing troced.res must also be consid-
ered. Of all thcse so far ciscussed, this problem
lends iteelf least to analysis. Lastly, we note
that the ultimate standard in these rrcblems is
measurement of real systess. This is receiving
consicderable attention in the ARPA net.

V. OQXCLISION

The atiesst in this paper has been to describe
and to evaluate various tools for studving delay in
crmmnication and corputer nets. These tools must
be consicdarably ircrovad. Nesvertheless, they have
been useful in netvoik studies. &mong the rost dif-
ficult remaining prebleams we mention the blocking
effect dve to finite sworzge capacity, the analyses
of utiiy proedwes, and the désign of newwork

topologies. R
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